The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes

被引:39
作者
Luk, Jonathan [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
关键词
BLACK-HOLE; IMPROVED DECAY; UNIFORM DECAY; BLOW-UP; STABILITY; SYSTEMS;
D O I
10.4171/JEMS/400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a semilinear equation with derivatives satisfying a null condition on slowly rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists globally in time and decays with a quantitative rate to the trivial solution. The proof uses the robust vector field method. It makes use of the decay properties of the linear wave equation on Kerr spacetime, in particular the improved decay rates in the region {r <= t/4}.
引用
收藏
页码:1629 / 1700
页数:72
相关论文
共 33 条
[1]  
Andersson L, 2009, ARXIV09082265
[2]   Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space [J].
Blue, Pieter ;
Sterbenz, Jacob .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (02) :481-504
[3]  
Catania D, 2006, DIFFER INTEGRAL EQU, V19, P799
[4]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[5]   Small-amplitude nonlinear waves on a black hole background [J].
Dafermos, M ;
Rodnianski, I .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (09) :1147-1172
[6]  
Dafermos Mihalis, 2009, XVIth International Congress on Mathematical Physics, P421
[7]  
Dafermos M., 2008, ARXIVGRQC08110354
[8]   A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds [J].
Dafermos, Mihalis ;
Rodnianski, Igor .
INVENTIONES MATHEMATICAE, 2011, 185 (03) :467-559
[9]   The Red-Shift Effect and Radiation Decay on Black Hole Spacetimes [J].
Dafermos, Mihalis ;
Rodnianski, Igor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (07) :859-919
[10]   Decay of solutions of the wave equation in the Kerr geometry (vol 264, pg 465, 2006) [J].
Finster, F. ;
Kamran, N. ;
Smoller, J. ;
Yau, S. -T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (02) :563-573