Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model

被引:105
作者
Sha, Wei E. I. [1 ]
Zhang, Hong [1 ]
Wang, Zi Shuai [1 ]
Zhu, Hugh L. [1 ]
Ren, Xingang [1 ]
Lin, Francis [2 ]
Jen, Alex K. -Y. [2 ,3 ]
Choy, Wallace C. H. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[3] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon Tong, Hong Kong, Peoples R China
关键词
detailed balance; device model; efficiency loss; perovskite solar cells; PERFORMANCE; LAYERS; RECOMBINATION; CH3NH3PBI3; LENGTHS; LIMIT; FILM;
D O I
10.1002/aenm.201701586
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A modified detailed balance model is built to understand and quantify efficiency loss of perovskite solar cells. The modified model captures the light-absorption-dependent short-circuit current, contact and transport-layer-modified carrier transport, as well as recombination and photon-recycling-influenced open-circuit voltage. The theoretical and experimental results show that for experimentally optimized perovskite solar cells with the power conversion efficiency of 19%, optical loss of 25%, nonradiative recombination loss of 35%, and ohmic loss of 35% are the three dominant loss factors for approaching the 31% efficiency limit of perovskite solar cells. It is also found that the optical loss climbs up to 40% for a thin-active-layer design. Moreover, a misconfigured transport layer introduces above 15% of energy loss. Finally, the perovskite-interface-induced surface recombination, ohmic loss, and current leakage should be further reduced to upgrade device efficiency and eliminate hysteresis effect. This work contributes to fundamental understanding of device physics of perovskite solar cells. The developed model offers a systematic design and analysis tool to photovoltaic science and technology.
引用
收藏
页数:7
相关论文
共 40 条
[11]   A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability [J].
Mei, Anyi ;
Li, Xiong ;
Liu, Linfeng ;
Ku, Zhiliang ;
Liu, Tongfa ;
Rong, Yaoguang ;
Xu, Mi ;
Hu, Min ;
Chen, Jiangzhao ;
Yang, Ying ;
Graetzel, Michael ;
Han, Hongwei .
SCIENCE, 2014, 345 (6194) :295-298
[12]   Perovskite solar cells: an emerging photovoltaic technology [J].
Park, Nam-Gyu .
MATERIALS TODAY, 2015, 18 (02) :65-72
[13]  
Press WH., 1992, NUMERICAL RECIPES C
[14]   Exploring the Way To Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model [J].
Ren, Xingang ;
Wang, Zishuai ;
Sha, Wei E. I. ;
Choy, Wallace C. H. .
ACS PHOTONICS, 2017, 4 (04) :934-942
[15]   Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance [J].
Saliba, Michael ;
Matsui, Taisuke ;
Domanski, Konrad ;
Seo, Ji-Youn ;
Ummadisingu, Amita ;
Zakeeruddin, Shaik M. ;
Correa-Baena, Juan-Pablo ;
Tress, Wolfgang R. ;
Abate, Antonio ;
Hagfeldt, Anders ;
Gratzel, Michael .
SCIENCE, 2016, 354 (6309) :206-209
[16]  
Selberherr S., 1984, Analysis and Simulation of Semiconductor Devices
[17]   The efficiency limit of CH3NH3PbI3 perovskite solar cells [J].
Sha, Wei E. I. ;
Ren, Xingang ;
Chen, Luzhou ;
Choy, Wallace C. H. .
APPLIED PHYSICS LETTERS, 2015, 106 (22)
[18]   A comprehensive study for the plasmonic thin-film solar cell with periodic structure [J].
Sha, Wei E. I. ;
Choy, Wallace C. H. ;
Chew, Weng Cho .
OPTICS EXPRESS, 2010, 18 (06) :5993-6007
[19]   Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J].
Shao, Yuchuan ;
Xiao, Zhengguo ;
Bi, Cheng ;
Yuan, Yongbo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2014, 5
[20]   Improving Perovskite Solar Cells: Insights From a Validated Device Model [J].
Sherkar, Tejas S. ;
Momblona, Cristina ;
Gil-Escrig, Lidon ;
Bolink, Henk J. ;
Koster, L. Jan Anton .
ADVANCED ENERGY MATERIALS, 2017, 7 (13)