Stable three-dimensional vortex solitons in Bose-Einstein condensates with nonlocal dipole-dipole interaction

被引:10
作者
Lashkin, V. M. [1 ]
Yakimenko, A. I. [1 ,2 ]
Zaliznyak, Yu A. [1 ]
机构
[1] Inst Nucl Res, UA-03680 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ, Dept Phys, UA-03022 Kiev, Ukraine
关键词
CONVERGENCE;
D O I
10.1088/0031-8949/79/03/035305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present spatially localized three-dimensional vortex solitons in Bose-Einstein condensates with local short-range and nonlocal dipole-dipole interactions. By means of a linear stability analysis, we investigate the stability of these structures and show that singly quantized vortices are stable provided that the chemical potential is positive and the number of atoms is below some critical value. The results are confirmed by direct numerical simulations of the Gross-Pitaevskii equation.
引用
收藏
页数:5
相关论文
共 28 条
[11]   Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates [J].
Huhtamaki, J. A. M. ;
Mottonen, M. ;
Virtanen, S. M. M. .
PHYSICAL REVIEW A, 2006, 74 (06)
[12]  
Kivshar Yu S, 2003, OPTICAL SOLITONS FIB
[13]   A mode elimination technique to improve convergence of iteration methods for finding solitary waves [J].
Lakoba, T. I. ;
Yang, J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :1693-1709
[14]   Two-dimensional nonlocal vortices, multipole solitons, and rotating multisolitons in dipolar Bose-Einstein condensates [J].
Lashkin, V. M. .
PHYSICAL REVIEW A, 2007, 75 (04)
[15]   Dynamic stability of a doubly quantized vortex in a three-dimensional condensate [J].
Lundh, Emil ;
Nilsen, Halvor M. .
PHYSICAL REVIEW A, 2006, 74 (06)
[16]   Collapse of Bose-Einstein condensates with dipole-dipole interactions [J].
Lushnikov, PM .
PHYSICAL REVIEW A, 2002, 66 (05) :4
[17]   On stability of vortices in three-dimensional self-attractive Bose-Einstein condensates [J].
Malomed, Boris A. ;
Lederer, Falk ;
Mazilu, Dumitru ;
Mihalache, Dumitru .
PHYSICS LETTERS A, 2007, 361 (4-5) :336-340
[18]   Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction [J].
Mihalache, D ;
Mazilu, D ;
Malomed, BA ;
Lederer, F .
PHYSICAL REVIEW A, 2006, 73 (04)
[19]   Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions [J].
O'Dell, D. H. J. ;
Eberlein, C. .
PHYSICAL REVIEW A, 2007, 75 (01)
[20]   Two-dimensional bright solitons in dipolar Bose-Einstein condensates [J].
Pedri, P ;
Santos, L .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)