Algebroids - general differential calculi on vector bundles

被引:62
作者
Grabowski, J
Urbanski, P
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
[2] Univ Warsaw, Div Math Methods Phys, PL-00682 Warsaw, Poland
关键词
Lie algebroid; exterior derivative; Poisson structure; tangent lift; vector bundle; Lie bialgebra;
D O I
10.1016/S0393-0440(99)00007-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A notion of an algebroid - a generalization of a Lie algebroid structure on a vector bundle is introduced. We show that many objects of the differential calculus on a manifold M associated with the canonical Lie algebroid structure on TM can be obtained in the framework of a general algebroid. Also a compatibility condition which leads, in general, to a concept of a bialgebroid. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:111 / 141
页数:31
相关论文
共 22 条
[11]  
KOSMANNSCHWARZBACH Y, 1990, ANN I H POINCARE-PHY, V53, P35
[12]  
Libermann P., 1996, ARCH MATH-BRNO, V32, P147
[13]  
Loday J.-L., 1993, ENSEIGN MATH, V39, P269
[14]   LIE BIALGEBROIDS AND POISSON GROUPOIDS [J].
MACKENZIE, KCH ;
XU, P .
DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) :415-452
[15]   LIE ALGEBROIDS AND LIE PSEUDOALGEBRAS [J].
MACKENZIE, KCH .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :97-147
[16]  
Mackenzie KCH, 1998, Q J MATH, V49, P59
[17]   DERIVATIONS OF DIFFERENTIAL FORMS ON JET BUNDLES [J].
PIDELLO, G ;
TULCZYJEW, WM .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 147 :249-265
[18]  
PRADINES J, 1967, CR ACAD SCI A MATH, V264, P245
[19]  
Tulczyjew W. M., 1974, S MATH, V14, P101
[20]  
Urbanski P., 1996, REND SEMIN MAT, V54, P405