Algebroids - general differential calculi on vector bundles

被引:62
作者
Grabowski, J
Urbanski, P
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
[2] Univ Warsaw, Div Math Methods Phys, PL-00682 Warsaw, Poland
关键词
Lie algebroid; exterior derivative; Poisson structure; tangent lift; vector bundle; Lie bialgebra;
D O I
10.1016/S0393-0440(99)00007-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A notion of an algebroid - a generalization of a Lie algebroid structure on a vector bundle is introduced. We show that many objects of the differential calculus on a manifold M associated with the canonical Lie algebroid structure on TM can be obtained in the framework of a general algebroid. Also a compatibility condition which leads, in general, to a concept of a bialgebroid. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:111 / 141
页数:31
相关论文
共 22 条
[1]  
ALEKSEEV A, 1998, 989 EC POL CTR MATH
[2]   TANGENT LIE ALGEBROIDS [J].
COURANT, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (13) :4527-4536
[3]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[4]  
Dufour J.-P., 1991, SEM GETODIM, P55
[5]   Tangent lifts of Poisson and related structures [J].
Grabowski, J ;
Urbanski, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23) :6743-6777
[6]   Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids [J].
Grabowski, J ;
Urbanski, P .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (05) :447-486
[7]  
Grabowski J., 1997, Reports on Mathematical Physics, V40, P195, DOI 10.1016/S0034-4877(97)85916-2
[8]  
KONIECZNA K, DGGA9710014
[9]  
KOSMANNSCHWARZB.Y, 1992, CONT MATH, V132, P453
[10]   From Poisson algebras to Gerstenhaber algebras [J].
KosmannSchwarzbach, Y .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (05) :1243-&