Adaptive L1/2 Shooting Regularization Method for Survival Analysis Using Gene Expression Data

被引:6
作者
Liu, Xiao-Ying [1 ,2 ]
Liang, Yong [1 ,2 ]
Xu, Zong-Ben [3 ]
Zhang, Hai [3 ]
Leung, Kwong-Sak [4 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[2] Macau Univ Sci & Technol, State Key Lab Qual Res Chinese Med, Macau 999078, Peoples R China
[3] Xi An Jiao Tong Univ, Fac Sci, Xian 710000, Peoples R China
[4] Chinese Univ Hong Kong, Dept Comp Sci & Technol, Hong Kong 999077, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
VARIABLE SELECTION; REGRESSION; LASSO;
D O I
10.1155/2013/475702
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new adaptive L-1/2 shooting regularization method for variable selection based on the Cox's proportional hazards mode being proposed. This adaptive L-1/2 shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of L-1 penalties and a shooting strategy of L-1/2 penalty. Simulation results based on high dimensional artificial data show that the adaptive L-1/2 shooting regularization method can be more accurate for variable selection than Lasso and adaptive Lasso methods. The results from real gene expression dataset (DLBCL) also indicate that the L-1/2 regularization method performs competitively.
引用
收藏
页数:5
相关论文
共 13 条
[1]   PARTIAL LIKELIHOOD [J].
COX, DR .
BIOMETRIKA, 1975, 62 (02) :269-276
[2]  
COX DR, 1972, J R STAT SOC B, V34, P187
[3]  
Fan JQ, 2002, ANN STAT, V30, P74
[4]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[5]   Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data [J].
Gui, J ;
Li, HZ .
BIOINFORMATICS, 2005, 21 (13) :3001-3008
[6]  
Jun Qian, 2010, Proceedings of the Third International Conference on Information and Computing Science (ICIC 2010), P93, DOI 10.1109/ICIC.2010.294
[7]   Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification [J].
Liang, Yong ;
Liu, Cheng ;
Luan, Xin-Ze ;
Leung, Kwong-Sak ;
Chan, Tak-Ming ;
Xu, Zong-Ben ;
Zhang, Hai .
BMC BIOINFORMATICS, 2013, 14
[8]   The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma [J].
Rosenwald, A ;
Wright, G ;
Chan, WC ;
Connors, JM ;
Campo, E ;
Fisher, RI ;
Gascoyne, RD ;
Muller-Hermelink, HK ;
Smeland, EB ;
Staudt, LM .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (25) :1937-1947
[9]  
Tibshirani R, 1997, STAT MED, V16, P385, DOI 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO
[10]  
2-3