Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

被引:65
作者
Pandey, G. P. [1 ]
Hashmi, S. A. [2 ]
机构
[1] SUNY Binghamton, CASP, Binghamton, NY 13902 USA
[2] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
关键词
Solid-state supercapacitor; MWCNT; Ionic liquid; Impedance spectroscopy; Cyclic voltammetry; DOUBLE-LAYER CAPACITORS; CARBON NANOTUBE ELECTRODES; ELECTROCHEMICAL CAPACITORS; COMPOSITE ELECTROLYTES; FUMED SILICA; PERFORMANCE; STABILITY; STORAGE; ENERGY;
D O I
10.1016/j.jpowsour.2013.05.183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity similar to 2.6 x 10(-3) S cm(-1) at 20 degrees C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of similar to 127 F g(-1), with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of similar to 76 F g(-1). The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 40 条
[1]   Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview [J].
Agrawal, R. C. ;
Pandey, G. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[2]  
An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
[3]  
2-G
[4]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[5]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[6]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[7]   Surface activation on multi-wall carbon nanotube for electrochemical capacitor applications [J].
Dai, Yong-Ming ;
Liu, Wen-Jay ;
Pan, Tsung-Chi ;
Jehng, Jih-Mirn .
APPLIED SURFACE SCIENCE, 2012, 258 (07) :3027-3032
[8]   Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium Salk [J].
Fan, J ;
Fedkiw, PS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (02) :399-408
[9]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[10]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423