On the order of the high-dimensional Cochrane sum and its mean value

被引:6
作者
Xu, ZF [1 ]
Zhang, WP [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
high-dimensional cochrane sum; Hyper-Kloosterman sum; asymptotic formula; order; mean value;
D O I
10.1016/j.jnt.2005.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to study the high-dimensional Cochrane sum and give a sharp estimate of its order by using properties of hyper-Kloosterman sum and the mean value theorems of Difichlet L-functions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 11 条
[1]  
APOSTOL TM, 1976, INTRO ANAL THEORY NU
[2]  
BUMP D, 1992, INT MATH RES NOTICES, V4, P75
[3]  
CHENGDONG P, 1999, FDN ANAL NUMBER THEO, P244
[4]   ON SELBERGS EIGENVALUE CONJECTURE [J].
LUO, W ;
RUDNICK, Z ;
SARNAK, P .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :387-401
[5]  
Mordell L.J., 1963, Calcutta Math. Soc. Golden Jubilee Commemoration, P29
[6]   N-DIMENSIONAL KLOOSTERMAN SUMS [J].
SMITH, RA .
JOURNAL OF NUMBER THEORY, 1979, 11 (03) :324-343
[7]   Estimation of exponential sums of polynomials of higher degrees II [J].
Ye, YB .
ACTA ARITHMETICA, 2000, 93 (03) :221-235
[8]  
YI Y, 2000, ADV MATH, V31, P518
[9]  
Zhang W.P., 2002, INTERNAT J MATH MATH, V32, P47
[10]  
Zhang WP, 2000, J NUMBER THEORY, V84, P199, DOI 10.1006/jnth.2000.2515