Residual transcendental extensions of valuations, irreducible polynomials, and trace series over p-adic fields

被引:0
作者
Zaharescu, Alexandru [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2013年 / 56卷 / 01期
关键词
Residual transcendental extensions; irreducible polynomials; trace series; local fields; SATURATED DISTINGUISHED CHAINS; METRIC INVARIANTS; CONSTRUCTION; THEOREM; ELEMENTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we survey some results related to residual transcendental extensions of valuations, irreducible polynomials over a local field, and trace series associated to suitable transcendental elements over p-adic fields.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 32 条
[1]   The Behavior of Rigid Analytic Functions Around Orbits of Elements of Cp [J].
Achimescu, S. ;
Alexandru, V. ;
Popescu, N. ;
Vajaitu, M. ;
Zaharescu, A. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2012, 127 :193-211
[2]  
Alexandru V, 2007, REND SEMIN MAT U PAD, V118, P197
[3]   Representation Results for Equivariant Rigid Analytic Functions [J].
Alexandru, V. ;
Popescu, N. ;
Vajaitu, M. ;
Zaharescu, A. .
ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (01) :137-145
[4]   On the iwasawa algebra associated to a normal element of a", p [J].
Alexandru, V. ;
Popescu, N. ;
Vajaitu, M. ;
Zaharescu, A. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (01) :45-55
[5]   A THEOREM OF CHARACTERIZATION OF RESIDUAL TRANSCENDENTAL EXTENSIONS OF A VALUATION [J].
ALEXANDRU, V ;
POPESCU, N ;
ZAHARESCU, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (04) :579-592
[6]   MINIMAL PAIRS OF DEFINITION OF A RESIDUAL TRANSCENDENTAL EXTENSION OF A VALUATION [J].
ALEXANDRU, V ;
POPESCU, N ;
ZAHARESCU, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1990, 30 (02) :207-225
[7]   Trace on Cp [J].
Alexandru, V ;
Popescu, N ;
Zaharescu, A .
JOURNAL OF NUMBER THEORY, 2001, 88 (01) :13-48
[8]   ALL VALUATIONS ON K(X) [J].
ALEXANDRU, V ;
POPESCU, N ;
ZAHARESCU, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1990, 30 (02) :281-296
[9]   On the closed subfields of Cp [J].
Alexandru, V ;
Popescu, N ;
Zaharescu, A .
JOURNAL OF NUMBER THEORY, 1998, 68 (02) :131-150
[10]  
ALEXANDRU V., 2003, J THEOR NOMBR BORDX, V15, P639