Lp eigenfunction bounds for the hermite operator

被引:86
作者
Koch, H [1 ]
Tataru, D
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94596 USA
基金
美国国家科学基金会;
关键词
D O I
10.1215/S0012-7094-04-12825-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain L P eigenfunction bounds for the harmonic oscillator H = -Delta + x(2) in R-n and for other related operators, improving earlier results of Thangavelu and of Karadzhov. We also construct suitable counterexamples that show that our estimates are sharp.
引用
收藏
页码:369 / 392
页数:24
相关论文
共 19 条
[1]  
[Anonymous], 1999, ENCY MATH APPL
[2]  
Escauriaza L, 2001, INDIANA U MATH J, V50, P1149
[3]   Carleman inequalities and the heat operator [J].
Escauriaza, L .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (01) :113-127
[4]  
Fedoryuk M.V., 1993, Asymptotic Analysis: Linear Ordinary Differential Equations
[5]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[6]   UNIQUE CONTINUATION AND ABSENCE OF POSITIVE EIGENVALUES FOR SCHRODINGER-OPERATORS [J].
JERISON, D ;
KENIG, CE ;
STEIN, EM .
ANNALS OF MATHEMATICS, 1985, 121 (03) :463-494
[8]  
Karadzhov G. E., 1994, C. R. Acad. Bulgare Sci, V47, P5
[9]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[10]   Dispersive estimates for principally normal pseudodifferential operators [J].
Koch, H ;
Tataru, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (02) :217-284