Some Improvements on Markov's Theorem with Extensions

被引:6
作者
Ogasawara, Haruhiko [1 ]
机构
[1] Otaru Univ, 3-5-21 Midori, Otaru, Hokkaido 0478501, Japan
基金
日本学术振兴会;
关键词
Cantelli's inequality; Chebyshev's inequality; Monotonic transformation; Multivariate kurtosis; Probability inequality; Sharpness; OPTION PRICES; UPPER-BOUNDS; PROBABILITY;
D O I
10.1080/00031305.2018.1497539
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov's theorem for an upper bound of the probability related to a nonnegative random variable has been improved using additional information in almost the nontrivial entire range of the variable. In the improvement, Cantelli's inequality is applied to the square root of the original variable, whose expectation is finite when that of the original variable is finite. The improvement has been extended to lower bounds and monotonic transformations of the original variable. The improvements are used in Chebyshev's inequality and its multivariate version.
引用
收藏
页码:218 / 225
页数:8
相关论文
共 21 条
  • [1] Cantelli FP., 1910, Bollettino Attuari Italiano, V24, P1
  • [2] Chen X, 2011, ARXIV07070805V2
  • [3] Chen X., 2007, ARXIV07070805V1
  • [4] Cramer Harald, 1999, Mathematical methods of statistics, V43
  • [5] DAVID FN, 1962, COMBINATORIAL CHANCE
  • [6] Option bounds
    De la Peña, VH
    Ibragimov, R
    Jordan, SJ
    [J]. JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 145 - 156
  • [7] EMBRECHTS P, 2012, MODELING EXTREMAL EV
  • [8] Foss S, 2011, SPRINGER SER OPER RE, P1, DOI 10.1007/978-1-4419-9473-8
  • [9] Probability inequalities related to Markov's theorem
    Ghosh, BK
    [J]. AMERICAN STATISTICIAN, 2002, 56 (03) : 186 - 190
  • [10] OPTION PRICES AND THE UNDERLYING ASSETS RETURN DISTRIBUTION
    GRUNDY, BD
    [J]. JOURNAL OF FINANCE, 1991, 46 (03) : 1045 - 1069