Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

被引:206
作者
Fuchs, F. [1 ]
Stender, B. [1 ]
Trupke, M. [2 ]
Simin, D. [1 ]
Pflaum, J. [1 ,3 ]
Dyakonov, V. [1 ,3 ]
Astakhov, G. V. [1 ]
机构
[1] Univ Wurzburg, Expt Phys 4, D-97074 Wurzburg, Germany
[2] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[3] Bavarian Ctr Appl Energy Res ZAE Bayern, D-97074 Wurzburg, Germany
关键词
NUCLEAR-MAGNETIC-RESONANCE; ROOM-TEMPERATURE; COHERENT CONTROL; VACANCY; 4H; ENTANGLEMENT; PHOSPHORUS; DEFECTS; QUBITS;
D O I
10.1038/ncomms8578
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Photophysics of chromium-related diamond single-photon emitters [J].
Aharonovich, I. ;
Castelletto, S. ;
Simpson, D. A. ;
Greentree, A. D. ;
Prawer, S. .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]   Observation of Faraday rotation from a single confined spin [J].
Atatuere, Mete ;
Dreiser, Jan ;
Badolato, Antonio ;
Imamoglu, Atac .
NATURE PHYSICS, 2007, 3 (02) :101-105
[3]  
Balasubramanian G, 2009, NAT MATER, V8, P2009
[4]   Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy [J].
Baranov, Pavel G. ;
Bundakova, Anna P. ;
Soltamova, Alexandra A. ;
Orlinskii, Sergei B. ;
Borovykh, Igor V. ;
Zondervan, Rob ;
Verberk, Rogier ;
Schmidt, Jan .
PHYSICAL REVIEW B, 2011, 83 (12)
[5]   Ab initio study of the annealing of vacancies and interstitials in cubic SiC:: Vacancy-interstitial recombination and aggregation of carbon interstitials -: art. no. 235202 [J].
Bockstedte, M ;
Mattausch, A ;
Pankratov, O .
PHYSICAL REVIEW B, 2004, 69 (23) :235202-1
[6]   Signature of intrinsic defects in SiC:: Ab initio calculations of hyperfine tensors -: art. no. 193102 [J].
Bockstedte, M ;
Heid, M ;
Pankratov, O .
PHYSICAL REVIEW B, 2003, 67 (19)
[7]   Silicon carbide photonic crystal cavities with integrated color centers [J].
Calusine, Greg ;
Politi, Alberto ;
Awschalom, David D. .
APPLIED PHYSICS LETTERS, 2014, 105 (01)
[8]   Optical and magnetic resonance signatures of deep levels in semi-insulating 4H SiC [J].
Carlos, WE ;
Glaser, ER ;
Shanabrook, BV .
PHYSICA B-CONDENSED MATTER, 2003, 340 :151-155
[9]  
Castelletto S, 2014, NAT MATER, V13, P151, DOI [10.1038/nmat3806, 10.1038/NMAT3806]
[10]   Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles [J].
Castelletto, Stefania ;
Johnson, Brett C. ;
Zachreson, Cameron ;
Beke, David ;
Balogh, Istvan ;
Ohshima, Takeshi ;
Aharonovich, Igor ;
Gali, Adam .
ACS NANO, 2014, 8 (08) :7938-7947