Action-angle coherent states for quantum systems with cylindric phase space

被引:12
作者
Aremua, Isiaka [1 ,2 ]
Gazeau, Jean Pierre [2 ]
Hounkonnou, Mahouton Norbert [1 ]
机构
[1] Univ Abomey Calavi, Cotonou, Benin
[2] Univ Paris Diderot, Lab APC, F-75205 Paris, France
关键词
SQUEEZED STATES; UNCERTAINTY RELATIONS; PAULIS THEOREM; QUANTIZATION; MECHANICS; PARTICLE; TIME; EVOLUTION; BEHAVIOR;
D O I
10.1088/1751-8113/45/33/335302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum versions of cylindric phase space, like for the motion of a particle on a circle, are obtained through different families of coherent states. The latter are built from various probability distributions of the action variable. The method is illustrated with Gaussian distributions and uniform distributions on intervals, and resulting quantizations are explored.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Coherent states and Bayesian duality [J].
Ali, S. Twareque ;
Gazeau, J-P ;
Heller, B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (36)
[2]   STOCHASTIC LOCALIZATION, QUANTUM-MECHANICS ON PHASE-SPACE AND QUANTUM SPACE-TIME [J].
ALI, ST .
RIVISTA DEL NUOVO CIMENTO, 1985, 8 (11) :1-128
[3]   Coherent states and related quantizations for unbounded motions [J].
Bagrov, V. G. ;
Gazeau, J-P ;
Gitman, D. M. ;
Levin, A. D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (12)
[4]   Semiclassical and quantum motions on the non-commutative plane [J].
Baldiotti, M. C. ;
Gazeau, J. P. ;
Gitman, D. M. .
PHYSICS LETTERS A, 2009, 373 (43) :3937-3943
[5]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[6]   Semi-classical behavior of Poschl-Teller coherent states [J].
Bergeron, H. ;
Gazeau, J. -P. ;
Siegl, P. ;
Youssef, A. .
EPL, 2010, 92 (06)
[7]   Quantum coherence with a single Cooper pair [J].
Bouchiat, V ;
Vion, D ;
Joyez, P ;
Esteve, D ;
Devoret, MH .
PHYSICA SCRIPTA, 1998, T76 :165-170
[8]   Are number and phase complementary observables? [J].
Busch, P ;
Lahti, P ;
Pellonpää, JP ;
Ylinen, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30) :5923-5935
[9]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[10]   EVOLUTION AND EXACT EIGENSTATES OF A RESONANT QUANTUM SYSTEM [J].
CHANG, SJ ;
SHI, KJ .
PHYSICAL REVIEW A, 1986, 34 (01) :7-22