pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools

被引:66
作者
Germain, Pierre-Luc [1 ,2 ,3 ]
Sonrel, Anthony [1 ,2 ]
Robinson, Mark D. [1 ,2 ]
机构
[1] Univ Zurich, Dept Mol Life Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] SIB Swiss Inst Bioinformat, Zurich, Switzerland
[3] Swiss Fed Inst Technol, D HEST Inst Neurosci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Single-cell RNA sequencing (scRNAseq); Pipeline; Clustering; Normalization; Filtering; Benchmark; EXPRESSION; NORMALIZATION; VARIABILITY;
D O I
10.1186/s13059-020-02136-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We presentpipeComp(), a flexible R framework for pipeline comparison handling interactions between analysis steps and relying on multi-level evaluation metrics. We apply it to the benchmark of single-cell RNA-sequencing analysis pipelines using simulated and real datasets with known cell identities, covering common methods of filtering, doublet detection, normalization, feature selection, denoising, dimensionality reduction, and clustering.pipeCompcan easily integrate any other step, tool, or evaluation metric, allowing extensible benchmarks and easy applications to other fields, as we demonstrate through a study of the impact of removal of unwanted variation on differential expression analysis.
引用
收藏
页数:28
相关论文
共 67 条
[11]  
Crowell HL, 2019, DISCOVERY POPLATION, DOI 10.1101/713412.
[12]   Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods [J].
Dal Molin, Alessandra ;
Baruzzo, Giacomo ;
Di Camillo, Barbara .
FRONTIERS IN GENETICS, 2017, 8
[13]  
Deeke JM, 2018, STABLY EXPRESSED GEN, DOI 10.1101/475426.
[14]  
Duo Angelo, 2018, F1000Res, V7, P1141, DOI 10.12688/f1000research.15666.3
[15]   Polyester: simulating RNA-seq datasets with differential transcript expression [J].
Frazee, Alyssa C. ;
Jaffe, Andrew E. ;
Langmead, Ben ;
Leek, Jeffrey T. .
BIOINFORMATICS, 2015, 31 (17) :2778-2784
[16]  
Freytag Saskia, 2018, F1000Res, V7, P1297, DOI 10.12688/f1000research.15809.1
[17]  
Gao M, 2020, BIORXIV, DOI [10.1101/2020.02.09.940221., DOI 10.1101/2020.02.09.940221]
[18]  
Germain P-L, 2020, FIGSHARE, DOI [10.6084/m9.figshare.12759677.v3., DOI 10.6084/M9.FIGSHARE.12759677.V3]
[19]  
Germain P-L, 2020, FIGSHARE, DOI [10.6084/m9.figshare.11787210., DOI 10.6084/M9.FIGSHARE.11787210]
[20]   Taming Human Genetic Variability: Transcriptomic Meta-Analysis Guides the Experimental Design and Interpretation of iPSC-Based Disease Modeling [J].
Germain, Pierre-Luc ;
Testa, Giuseppe .
STEM CELL REPORTS, 2017, 8 (06) :1784-1796