ABSORBING BOUNDARY CONDITIONS FOR THE TWO-DIMENSIONAL SCHRODINGER EQUATION WITH AN EXTERIOR POTENTIAL. PART I: CONSTRUCTION AND A PRIORI ESTIMATES

被引:25
作者
Antoine, Xavier [1 ]
Besse, Christophe [2 ]
Klein, Pauline [3 ]
机构
[1] Nancy Univ, Inst Elie Cartan Nancy, CNRS UMR 7502, INRIA CORIDA Team, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Lille 1 Sci & Technol, Lab Paul Painleve, Univ Lille Nord France, INRIA SIMPAF Team,CNRS UMR 8524, F-59655 Villeneuve Dascq, France
[3] Univ Franche Comte, Lab Math Besancon, CNRS UMR 6623, F-25030 Besancon, France
关键词
Schrodinger equation; absorbing boundary conditions; variable potential; PERFECTLY MATCHED LAYER; TRANSPARENT; SIMULATION; SCHEMES;
D O I
10.1142/S0218202512500261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to construct some classes of absorbing boundary conditions for the two-dimensional Schrodinger equation with a time and space varying exterior potential and for general convex smooth boundaries. The construction is based on asymptotics of the inhomogeneous pseudodifferential operators defining the related Dirichletto-Neumann operator. Furthermore, a priori estimates are developed for the truncated problems with various increasing order boundary conditions. The effective numerical approximation will be treated in a second paper.
引用
收藏
页数:38
相关论文
共 31 条
[1]   Numerical schemes for the simulation of the two-dimensional Schrodinger equation using non-reflecting boundary conditions [J].
Antoine, X ;
Besse, C ;
Mouysset, V .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1779-1799
[2]   Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (01) :157-175
[3]   Bayliss-Turkel-lilte radiation conditions on surfaces of arbitrary shape [J].
Antoine, X ;
Barucq, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) :184-211
[4]   Construction, structure and asymptotic approximations of a microdifferential transparent boundary condition for the linear Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :701-738
[5]  
Antoine X., 2009, CUBO, V11, P29
[6]  
Antoine X, 2008, COMMUN COMPUT PHYS, V4, P729
[7]   Absorbing boundary conditions for the two-dimensional Schrodinger equation with an exterior potential [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
NUMERISCHE MATHEMATIK, 2013, 125 (02) :191-223
[8]   Absorbing boundary conditions for the one-dimensional Schrodinger equation with an exterior repulsive potential [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) :312-335
[9]   On an open transient Schrodinger-Poisson system [J].
Ben Abdallah, N ;
Méhats, F ;
Pinaud, O .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (05) :667-688
[10]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200