Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells

被引:40
|
作者
Du, CY [1 ]
Cheng, XQ [1 ]
Yang, T [1 ]
Yin, GP [1 ]
Shi, PF [1 ]
机构
[1] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China
关键词
PEM fuel cell; cathode; ordered catalyst layer; mathematical modeling;
D O I
10.1016/j.elecom.2005.09.022
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A steady-state, one-dimensional numerical model based on cylindrical electrode structure is presented to analyze the performance of the ordered cathode catalyst layer in Proton Exchange Membrane Fuel Cells. The model equations account for the Tafel kinetics of oxygen reduction reaction, proton migration, oxygen diffusion in the cylindrical electrolyte and the gas pores, oxygen distribution at the gas/electrolyte interface. The simulation results reveal that ordered catalyst layers have better performance than conventional catalyst layers due to the improvements of mass transport and the uniformity of the electrochemical reaction rate across the whole width of the catalyst layer. The influences of oxygen diffusivity in gas phase and electrolyte, and the proton conductivity have been shown. The limitation by oxygen diffusion in gas phase drives the active region of the catalyst layer to the catalyst layer/gas diffuser interface. The limitation by proton migration confines the active region of the catalyst layer to the membrane/catalyst layer interface. The limitation due to oxygen diffusion in electrolyte film maintains the uniform distribution of the active region throughout the ordered catalyst layer. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1411 / 1416
页数:6
相关论文
共 50 条
  • [1] Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells
    Hussain, M. M.
    Song, D.
    Liu, Z. -S.
    Xie, Z.
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4533 - 4544
  • [2] Cathode catalyst layer design for proton exchange membrane fuel cells
    Therdthianwong, Apichai
    Saenwiset, Pornrumpa
    Therdthianwong, Supaporn
    FUEL, 2012, 91 (01) : 192 - 199
  • [3] Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells
    Sun, Yanyan
    Polani, Shlomi
    Luo, Fang
    Ott, Sebastian
    Strasser, Peter
    Dionigi, Fabio
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells
    Yanyan Sun
    Shlomi Polani
    Fang Luo
    Sebastian Ott
    Peter Strasser
    Fabio Dionigi
    Nature Communications, 12
  • [5] Numerical Simulation of Effects of Catalyst Layer Parameters on Heat Transfer in Proton Exchange Membrane Fuel Cells
    Li, Yitong
    Guo, Hang
    Ye, Fang
    Chen, Hao
    HEAT TRANSFER ENGINEERING, 2024,
  • [6] Parametric study of a novel cathode catalyst layer in proton exchange membrane fuel cells
    Du, C. Y.
    Yin, G. P.
    Cheng, X. Q.
    Shi, P. F.
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 224 - 231
  • [7] Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells
    Shahgaldi, Samaneh
    Ozden, Adnan
    Li, Xianguo
    Hamdullahpur, Feridun
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1476 - 1486
  • [8] Catalyst layer models for proton exchange membrane fuel cells
    Chan, SH
    Tun, WA
    CHEMICAL ENGINEERING & TECHNOLOGY, 2001, 24 (01) : 51 - 57
  • [9] Catalyst layer models for proton exchange membrane fuel cells
    Chan, S.H.
    Tun, W.A.
    Chemical Engineering and Technology, 2001, 24 (01): : 51 - 57
  • [10] Improved Cathode Catalyst Layers for Proton Exchange Membrane Fuel Cells
    Jayasayee, K.
    Zlotorowicz, A.
    Clos, D. P.
    Dahl, O.
    Thomassen, M. S.
    Dahl, P. I.
    Kjelstrup, S.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 321 - 339