On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs

被引:27
作者
Szumny, Waldemar [1 ]
Wloch, Iwona [1 ]
Wloch, Andrzej [1 ]
机构
[1] Rzeszow Tech Univ, Dept Math, PL-35359 Rzeszow, Poland
关键词
counting; (k; l)-kernel; efficient dominating set; lexicographic product;
D O I
10.1016/j.disc.2007.08.078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [G. Hopkins, W. Staton, Some identities arising from the Fibonacci numbers of certain graphs, Fibonacci Quart. 22 (1984) 225-228.] and [I. Wloch, Generalized Fibonacci polynomial of graphs, Ars Combinatoria 68 (2003) 49-55] the total number of k-independent sets in the generalized lexicographic product of graphs was given. In this paper we study (k, l)-kernels (i.e. k-independent sets being l-dominating. simultaneously) in this product and we generalize some results from [A. Wloch, I. Wloch, The total number of maximal k-independent sets in the generalized lexicographic product of graphs, Ars Combinatoria 75 (2005) 163-170]. We give the necessary and sufficient conditions for the existence of (k. I)-kernels in it. Moreover, we construct formulas which calculate the number of all (k, l)-kernels, k-independent sets and I-dominating sets in the lexicographic product of graphs for all parameters k. l. The result concerning the total number of independent sets generalizes the Fibonacci polynomial of graphs. Also for special graphs we give some recurrence formulas. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4616 / 4624
页数:9
相关论文
共 13 条
  • [1] Bange D. W., 1988, Applications of Discrete Mathematics, P189
  • [2] Berge C., 1971, Principles of Combinatorics
  • [3] FRICKE GH, 1995, ARS COMBIMATORIA, V41, P34
  • [4] HOPKINS G, 1984, FIBONACCI QUART, V22, P225
  • [5] Kwanik M., 1980, THESIS TU WROCLAW WR
  • [6] Kwasnik M, 2000, ARS COMBINATORIA, V55, P139
  • [7] Bounds on the number of vertex independent sets in a graph
    Pedersen, Anders Sune
    Vestergaard, Preben Dahl
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06): : 1575 - 1587
  • [8] PRODINGER H, 1982, FIBONACCI QUART, V20, P16
  • [9] Sagan B., 1988, SIAM J DISCRETE MATH, V1, P105
  • [10] West B., 1996, INTRO GRAPH THEORY