A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms

被引:0
作者
Hertz, F. Rodriguez [1 ]
Hertz, M. A. Rodriguez [1 ]
Tahzibi, A. [2 ]
Ures, R. [1 ]
机构
[1] Univ Republica, IMERL Fac Ingn, Montevideo, Uruguay
[2] ICMC USP Sao Carlos, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES | 2007年 / 14卷
基金
巴西圣保罗研究基金会;
关键词
non-uniform hyperbolicity; ergodicity; partial hyperbolicity; SRB-measures;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we exhibit a new criterion for ergodicity of diffeomorphisms involving conditions on Lyapunov exponents and the general position of some invariant manifolds. On the one hand, we derive uniqueness of SRB-measures for transitive surface diffeomorphisms. On the other hand, using recent results on the existence of blenders we give a positive answer, in the C-1 topology, to a conjecture of Pugh and Shub in the context of partially hyperbolic conservative diffeomorphisms with two dimensional center bundle.
引用
收藏
页码:74 / 81
页数:8
相关论文
共 22 条
[1]   Creating connections in topology C1 [J].
Arnaud, MC .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :339-381
[2]   Removing zero Lyapunov exponents [J].
Baraviera, AT ;
Bonatti, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1655-1670
[3]  
BARREIRA L, 2007, ENCY MATH ITS APPL
[4]   The Lyapunov exponents of generic volume-preserving and symplectic maps [J].
Bochi, J ;
Viana, M .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1423-1485
[5]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[6]   A C1-generic dichotomy for diffeomorphisms:: Weak forms of hyperbolicity or infinitely many sinks or sources [J].
Bonatti, C ;
Díaz, LJ ;
Pujals, ER .
ANNALS OF MATHEMATICS, 2003, 158 (02) :355-418
[7]  
BONATTI C, 2005, ENCY MATH SCI, V102
[8]  
BONATTI C, 2006, ROBUST HETERODIMENSI
[9]  
BRIN M., 1974, MATH USSR IZV, V38, p[170, 177]
[10]   Partial hyperbolicity, Lyapunov exponents and stable ergodicity [J].
Burns, K ;
Dolgopyat, D ;
Pesin, Y .
JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) :927-942