Eliminating wire crossings for molecular quantum-dot cellular automata implementation

被引:35
|
作者
Chaudhary, A [1 ]
Chen, DZ [1 ]
Hu, XBS [1 ]
Whitton, K [1 ]
Niemier, M [1 ]
Ravichandran, R [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46545 USA
关键词
D O I
10.1109/ICCAD.2005.1560130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When exploring computing elements made from technologies other than CMOS, it is imperative to investigate the effects of physical implementation constraints. This paper focuses on molecular Quantum-dot Cellular Automata circuits. For these circuits, it is very difficult for chemists to fabricate wire crossings (at least in the near future). A novel technique is introduced to remove wire crossings in a given circuit to facilitate the self assembly of real circuits - thus providing meaningful and functional design targets for both physical and computer scientists. The technique eliminates all wire crossings with minimal logic gate/node duplications. Experimental results based on existing QCA circuits and other benchmarks are quite encouraging, and suggest that further investigation is needed.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 50 条
  • [31] Implementation of Comparison Function Using Quantum-Dot Cellular Automata
    Wagh, Meghanad D.
    Sun, Yichun
    Annampedu, Viswanath
    NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS: MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, 2008, : 76 - +
  • [32] Implementation of a crossbar network using quantum-dot cellular automata
    Graunke, CR
    Wheeler, DI
    Tougaw, D
    Will, JD
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (04) : 435 - 440
  • [33] Triangular Quantum-Dot Cellular Automata Wire for Standard Ternary Logic
    Niloofar Ronaghi
    Reza Faghih Mirzaee
    Samira Sayedsalehi
    International Journal of Theoretical Physics, 2020, 59 : 3821 - 3839
  • [34] Triangular Quantum-Dot Cellular Automata Wire for Standard Ternary Logic
    Ronaghi, Niloofar
    Faghih Mirzaee, Reza
    Sayedsalehi, Samira
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (12) : 3821 - 3839
  • [35] Implementations of Quantum-dot Cellular Automata
    Snider, Gregory
    Orlov, Alexei
    Lent, Craig
    Bernstein, Gary
    Lieberman, Marya
    Fehlner, Thomas
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 631 - +
  • [36] Quantum-dot cellular automata adders
    Wang, W
    Walus, K
    Jullien, GA
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 461 - 464
  • [37] PLAs in quantum-dot cellular automata
    Crocker, Michael
    Hu, Xiaobo Sharon
    Niemier, Michael
    Yan, Minjun
    Bernstein, Gary
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (03) : 376 - 386
  • [38] Electronic Quantum-dot Cellular Automata
    Snider, Gregory L.
    Orlov, Alexei O.
    Joshi, Vishwanath
    Joyce, Robin A.
    Qi, Hua
    Yadavalli, Kameshwar K.
    Bernstein, Gary H.
    Fehlner, Thomas P.
    Lent, Craig S.
    2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1-4, 2008, : 549 - 552
  • [39] PLAs in Quantum-dot Cellular Automata
    Hu, Xiaobo Sharon
    Crocker, Michael
    Niemier, Michael
    Yan, Minjun
    Bernstein, Gary
    IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, PROCEEDINGS: EMERGING VLSI TECHNOLOGIES AND ARCHITECTURES, 2006, : 242 - +
  • [40] Quantum computing with quantum-dot cellular automata
    Toáth, G.
    Lent, C.S.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (05): : 523151 - 523159