ORDERING CACTI WITH n VERTICES AND k CYCLES BY THEIR LAPLACIAN SPECTRAL RADII

被引:0
|
作者
Guo, Shu-Guang [1 ]
Wang, Yan-Feng [1 ]
机构
[1] Yancheng Teachers Univ, Sch Math Sci, Yancheng 224002, Jiangsu, Peoples R China
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2012年 / 92卷 / 106期
基金
中国国家自然科学基金;
关键词
TREES; GRAPH;
D O I
10.2298/PIM1206117G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is a cactus if any two of its cycles have at most one common vertex. In this paper, we determine the first sixteen largest Laplacian spectral radii together with the corresponding graphs among all connected cacti with n vertices and k cycles, where n >= 2k + 8.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 50 条
  • [21] Cacti with n-vertices and t cycles having extremal Wiener index
    Gutman, Ivan
    Li, Shuchao
    Wei, Wei
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 189 - 200
  • [22] The Laplacian spectral radius of unicyclic graphs with k pendent vertices
    Zhang, Xiaoling
    Zhang, Heping
    ARS COMBINATORIA, 2009, 90 : 345 - 355
  • [23] Ordering trees with n vertices and diameter d by their largest laplacian eigenvalues
    Guo, Shu-Guang
    UTILITAS MATHEMATICA, 2007, 74 : 65 - 69
  • [24] On the Signless Laplacian Spectral Radius of Cacti
    Chen, Mingzhu
    Zhou, Bo
    CROATICA CHEMICA ACTA, 2016, 89 (04) : 493 - 498
  • [25] On the signless Laplacian index of cacti with a given number of pendant vertices
    Li, Shuchao
    Zhang, Minjie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4400 - 4411
  • [26] On the Laplacian spectral radii of trees
    Yuan, Xi-Ying
    Shan, Hai-Ying
    Liu, Yue
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4241 - 4246
  • [27] Ordering of k-Uniform Hypertrees by their Distance Spectral Radii
    Liu, Xiangxiang
    Wang, Ligong
    Li, Xihe
    FILOMAT, 2022, 36 (09) : 3025 - 3035
  • [28] The Signless Laplacian Spectral Radius of Tricyclic Graphs with k Pendant Vertices
    Jingming ZHANGJiming GUO School of Mathematical SciencesUniversity of Electronic Science and Technology of China Sichuan PRChinaCollege of Mathematics and Computational ScienceChina University of Petroleum Shandong PRChina
    数学研究及应用, 2012, 32 (03) : 281 - 287
  • [29] The Signless Laplacian Spectral Radius for Bicyclic Graphs with k Pendant Vertices
    Feng, Lihua
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 109 - 116
  • [30] The Signless Laplacian Spectral Radius of Tricyclic Graphs with k Pendant Vertices
    Jingming ZHANG1
    2.College of Mathematics and Computational Science
    Journal of Mathematical Research with Applications, 2012, (03) : 281 - 287