ON A NON-ABELIAN POINCARE LEMMA

被引:11
作者
Voronov, Theodore Th. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Maurer-Cartan equation; Lie superalgebras; differential forms; supermanifolds; Lie algebroids; homological vector fields; multiplicative integral; Q-manifolds; Quillen's superconnection;
D O I
10.1090/S0002-9939-2011-11116-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a well-known result on solutions of the Maurer-Cartan equation extends to arbitrary (inhomogeneous) odd forms: any such form with values in a Lie superalgebra satisfying d omega + omega(2) = 0 is gauge-equivalent to a constant, omega = gCg(-1) - dg g(-1). This follows from a non-Abelian version of a chain homotopy formula making use of multiplicative integrals. An application to Lie algebroids and their non-linear analogs is given. Constructions presented here generalize to an abstract setting of differential Lie superalgebras where we arrive at the statement that odd elements (not necessarily satisfying the Maurer-Cartan equation) are homotopic-in a certain particular sense-if and only if they are gauge-equivalent.
引用
收藏
页码:2855 / 2872
页数:18
相关论文
共 17 条
[1]  
[Anonymous], DEFORMATION TH UNPUB
[2]  
[Anonymous], ARXIVMATH0608111V2MA
[3]  
[Anonymous], ARXIV07114106V1MATHD
[4]  
[Anonymous], 2002, Quantization, Poisson brackets and beyond (Manchester, 2001)
[5]  
[Anonymous], BEDL POL 17 23 OCT 2
[6]  
[Anonymous], USPEKHI MATEM NAUK
[7]  
ASADA A, 1986, LECT NOTES MATH, V1209, P37
[8]   Feynman diagrams and minimal models for operadic algebras [J].
Chuang, J. ;
Lazarev, A. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :317-337
[9]  
Gantmacher E. R., 1959, APPL THEORY MATRICES
[10]  
Mackenzie K. C. H., 2005, London Math. Soc. Lecture Note Ser