Malware Detection using Malware Image and Deep Learning

被引:0
作者
Choi, Sunoh [1 ]
Jang, Sungwook [1 ]
Kim, Youngsoo [1 ]
Kim, Jonghyun [1 ]
机构
[1] ETRI, Informat Secur Div, Daejeon, South Korea
来源
2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC) | 2017年
关键词
Malware Detection; Deep Learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
These days a lot of malw are are generated. In order to deal with the new malware, we need new ways to detect malware. In this paper, we introduce a method to detect malware using deep learning. First, we generate images from benign files and malware. Second, by using deep learning, we train a model to detect malware. Then, by the trained model, we detect malware. By using malware images and deep learning, we can detect malware fast since we do not need any static analysis or dynamic analysis.
引用
收藏
页码:1193 / 1195
页数:3
相关论文
共 8 条
[1]  
[Anonymous], IEEE ICASSP
[2]  
[Anonymous], INT J COMPUTER VISIO
[3]  
Gibert D., 2016, Convolutional Neural Networks for Malware Classification
[4]  
Huang Wenyi, 2016, DIMVA
[5]  
Krizhevsky Alex., 2012, u International Conference on Neural Information Processing Systems - Volume, V1
[6]  
Nataraj L., 2011, ACM VIZSEC
[7]  
Pascanu Razvan, 2015, IEEE ICASSP
[8]  
Seok Seonhee, 2016, J KOREA I INFORM SEC