Graphical modelling and the Mahalanobis distance

被引:4
作者
Bedrick, EJ [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
discriminant analysis; distance between populations;
D O I
10.1080/02664760500163680
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
I consider the problem of estimating the Mahalanobis distance between multivariate normal populations when the population covariance matrix satisfies a graphical model. In addition to providing a clear understanding of the dependencies in a multivariate data set, the use of graphical models can reduce the variability of the estimated distances and improve inferences. I derive the asymptotic distribution of the estimated Mahalanobis distance under a general covariance model, which includes graphical models as a special case. Two examples are discussed.
引用
收藏
页码:959 / 967
页数:9
相关论文
共 11 条
[1]  
ALTHAM PME, 1984, J ROY STAT SOC B MET, V46, P118
[2]  
Burnham K. P., 1998, MODEL SELECTION INFE
[3]  
Davidson A. C., 1997, BOOTSTRAP METHODS TH
[4]  
EDWARDS E, 1995, INTRO GRAPHICAL MODE
[5]  
Howells WW, 1973, PAPERS PEABODY MUSEU, V67
[6]   ON USE OF DISCRIMINANT FUNCTIONS IN TAXONOMY [J].
LUBISCHEW, AA .
BIOMETRICS, 1962, 18 (04) :455-&
[7]  
Rao C. R., 1973, Linear statistical inference and its applications, V2
[8]  
Tomasko L, 1999, STAT MED, V18, P1249, DOI 10.1002/(SICI)1097-0258(19990530)18:10<1249::AID-SIM125>3.3.CO
[9]  
2-R
[10]   MATRIX CORRELATION TESTS SUPPORT A SINGLE ORIGIN FOR MODERN HUMANS [J].
WADDLE, DM .
NATURE, 1994, 368 (6470) :452-454