Charge Trapping Augmented Switchable Sub-band-gap Photoresponse of Zinc-Tin Oxide Thin-Film Transistor

被引:2
作者
Hsiao, Yang-Hsuan [1 ]
Leung, Tak-Pui [1 ]
Li, Jeng-Ting [1 ]
Shih, Li-Chung [1 ]
Chen, Jen-Sue [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 701, Taiwan
关键词
charge trapping; switchable photoresponse; thin-film transistor; zinc-tin oxide; visible light;
D O I
10.1021/acsaelm.0c00323
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, a charge trapping thin-film transistor (TFT) is demonstrated based on a zinc-tin oxide (ZTO) semiconductor channel layer and a stack of AlOx/AZO nanoparticles/SiO2 as the gate dielectrics. This device can be switched from the pristine state to the charge trapping state via the application of a positive gate voltage pulse (V-G = 40 V for 1 s). When the TFT is set at the charge trapping state, the dynamic photoresponse (to light in the wavelength of 405 or 635 nm) of drain current gain can be significantly enhanced as compared to that of the device set at the pristine state. As a comparison, the ZTO TFT without the nanoparticulate AZO layer exhibits neither charge trapping nor enhanced photoresponse characteristics. The enhancement in the dynamic photoresponse of the charge trapping TFT is attributed to the increasing number of electrons at the ZTO channel by light-assisted detrapping charges. The methodology used in this study provides a unique approach to achieve photosensitive and photostable duality within a single device.
引用
收藏
页码:2078 / 2083
页数:6
相关论文
共 50 条
[11]   Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor [J].
Chen Yong-Yue ;
Wang Xiong ;
Cai Xi-Kun ;
Yuan Zi-Jian ;
Zhu Xia-Ming ;
Qiu Dong-Jiang ;
Wu Hui-Zhen .
CHINESE PHYSICS B, 2014, 23 (02)
[12]   Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor [J].
陈勇跃 ;
王雄 ;
才玺坤 ;
原子健 ;
朱夏明 ;
邱东江 ;
吴惠桢 .
Chinese Physics B, 2014, 23 (02) :368-372
[13]   Effective Contact Resistance of Zinc-Tin Oxide-Based Thin Film Transistors [J].
Kang, Youjin ;
Han, Dongsuk ;
Park, Jaehyung ;
Shin, Sora ;
Choi, Duckkyun ;
Park, Jongwan .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (11) :8148-8152
[14]   Effect of PGMEA Addition on Zinc-Tin-Oxide Thin-Film Transistor Fabricated by Inkjet-Printing Process [J].
Lee, Yong Gu ;
Choi, Woon-Seop .
ADVANCED ENGINEERING MATERIALS, 2022, 24 (10)
[15]   Investigations on the reasons for degradation of zinc tin oxide thin film transistor on exposure to air [J].
Shijeesh, M. R. ;
Saritha, A. C. ;
Jayaraj, M. K. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 74 :116-121
[16]   Solution-processed semiconducting aluminum-zinc-tin-oxide thin films and their thin-film transistor applications [J].
Kim, Kyeong-Ah ;
Bak, Jun-Yong ;
Choi, Jeong-Seon ;
Yoon, Sung-Min .
CERAMICS INTERNATIONAL, 2014, 40 (06) :7829-7836
[17]   Investigation on the Doping Dependence of Solution-Processed Zinc Tin Oxide Thin Film and Thin-Film Transistors [J].
Jung, C. H. ;
Lee, J. Y. ;
Pu, L. S. ;
Yoon, D. H. .
SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2011, 41 (09) :1153-1157
[18]   Mobility enhancement of tin oxide thin-film transistor by indium-doping [J].
Wei, Ya-Fen ;
Zhang, Tao ;
Wu, Jia-Jie ;
Li, Tie-Jun ;
Lin, Dong .
VACUUM, 2024, 221
[19]   An InGaZnO Charge-Trapping Nonvolatile Memory With the Same Structure of a Thin-Film Transistor [J].
Zhang, C. ;
Li, D. ;
Lai, P. T. ;
Huang, X. D. .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (01) :32-35
[20]   Water as Origin of Hysteresis in Zinc Tin Oxide Thin-Film Transistors [J].
Fakhri, M. ;
Johann, H. ;
Goerrn, P. ;
Riedl, T. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) :4453-4456