Phase-field simulation of dendrite growth under forced flow conditions in an Al-Cu welding molten pool

被引:10
作者
Wang, Lei [1 ]
Wei, Yanhong [1 ]
Yu, Fengyi [1 ]
Zhang, Qi [1 ]
Peng, Qingyu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase-field; dendrite growth; forced flow; Weld; Al-Cu alloy; MECHANICAL-PROPERTIES; MICROSTRUCTURE; SOLIDIFICATION; ALLOYS; MODEL;
D O I
10.1002/crat.201600165
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A quantitative phase-field model for directional solidification is applied to study dendrite growth under forced flow conditions in an Al-Cu Gas Tungsten Arc (GTA) welding molten pool. Evolution of the dendrite morphology and the solute field under forced flow conditions is simulated. Growth of columnar grains goes through three periods, including the initial instability period, the competitive growth period and the relatively stable period. The solute segregation, the solute redistribution and the solute concentration in the liquid side of the interface are investigated, respectively. For the given conditions, simulation results are in good agreement with experimental findings.
引用
收藏
页码:602 / 609
页数:8
相关论文
共 28 条
  • [1] Spacing characterization in Al-Cu alloys directionally solidified under transient growth conditions
    Amoorezaei, Morteza
    Gurevich, Sebastian
    Provatas, Nikolas
    [J]. ACTA MATERIALIA, 2010, 58 (18) : 6115 - 6124
  • [2] Modeling melt convection in phase-field simulations of solidification
    Beckermann, C
    Diepers, HJ
    Steinbach, I
    Karma, A
    Tong, X
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) : 468 - 496
  • [3] Boettger B., 2012, METALS, V65, P613
  • [4] Comparison of phase-field and cellular automaton models for dendritic solidification in Al-Cu alloy
    Choudhury, Abhik
    Reuther, Klemens
    Wesner, Eugenia
    August, Anastasia
    Nestler, Britta
    Rettenmayr, Markus
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 55 : 263 - 268
  • [5] Welding: Solidification and microstructure
    David, SA
    Babu, SS
    Vitek, JM
    [J]. JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2003, 55 (06): : 14 - 20
  • [6] CORRELATION BETWEEN SOLIDIFICATION PARAMETERS AND WELD MICROSTRUCTURES
    DAVID, SA
    VITEK, JM
    [J]. INTERNATIONAL MATERIALS REVIEWS, 1989, 34 (05) : 213 - 245
  • [7] MICROSTRUCTURE OF STAINLESS-STEEL SINGLE-CRYSTAL ELECTRON-BEAM WELDS
    DAVID, SA
    VITEK, JM
    RAPPAZ, M
    BOATNER, LA
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (06): : 1753 - 1766
  • [8] Echebarria B, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061604
  • [9] Investigation of weld pool in aluminum alloys: Geometry and solidification microstructure
    Farzadi, A.
    Serajzadeh, S.
    Kokabi, A. H.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (05) : 809 - 819
  • [10] Phase-field simulation of weld solidification microstructure in an Al-Cu alloy
    Farzadi, A.
    Do-Quang, M.
    Serajzadeh, S.
    Kokabi, A. H.
    Amberg, G.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)