Double Laguerre-Gaussian beams

被引:4
作者
Kotlyar, V. V. [1 ,2 ]
Abramochkin, E. G. [3 ]
Kovalev, A. A. [1 ,2 ]
Savelyeva, A. A. [1 ,2 ]
机构
[1] FSRC Crystallog & Photon RAS, IPSI RAS Branch, Molodogvardeyskaya 151, Samara 443001, Russia
[2] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
[3] Lebedev Phys Inst, Novo Sadovaya 221, Samara 443011, Russia
基金
俄罗斯科学基金会;
关键词
Laguerre-Gaussian beam; product of complex amplitudes; Fourier-invariant beam; topological charge; ORBITAL ANGULAR-MOMENTUM; MODES;
D O I
10.18287/2412-6179-CO-1177
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show here that the product of two Laguerre-Gaussian (LG) beams, i.e. double LG beams (dLG), can be represented as finite superposition of conventional LG beams with certain coefficients that are expressed via zero-argument Jacobi polynomials. This allows obtaining an explicit expression for the complex amplitude of the dLG beams in the Fresnel diffraction zone. Generally, such beams do not retain their structure, changing shape upon free-space propagation. However, if both LG beams are of the same order, we obtain a special case of a "squared" LG beam, which is Fourier-invariant. Another special case of the dLG beams is obtained when the azimuthal indices of the Laguerre polynomials are equal to n - m and n + m. For such a beam, an explicit expression is obtained for the complex amplitude in the Fourier plane. We show that if the lower indices of the constituent LG beams are the same, such a double LG beam is also Fourier-invariant. Similar to conventional LG beams, the product of LG beams can be used for optical data transmission, since they are characterized by azimuthal orthogonality and carry an orbital angular momentum equal to the topological charge.
引用
收藏
页码:872 / +
页数:6
相关论文
共 28 条
[1]   BEAM TRANSFORMATIONS AND NONTRANSFORMED BEAMS [J].
ABRAMOCHKIN, E ;
VOLOSTNIKOV, V .
OPTICS COMMUNICATIONS, 1991, 83 (1-2) :123-135
[2]   Generalized Gaussian beams [J].
Abramochkin, EG ;
Volostnikov, VG .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (05) :S157-S161
[3]   General astigmatic transform of Hermite-Laguerre-Gaussian beams [J].
Abramochkin, Eugeny ;
Razueva, Evgeniya ;
Volostnikov, Vladimir .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (11) :2506-2513
[4]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[5]   Elliptical Laguerre-Gaussian correlated Schell-model beam [J].
Chen, Yahong ;
Liu, Lin ;
Wang, Fei ;
Zhao, Chengliang ;
Cai, Yangjian .
OPTICS EXPRESS, 2014, 22 (11) :13975-13987
[6]   The Resilience of Hermite- and Laguerre-Gaussian Modes in Turbulence [J].
Cox, Mitchell A. ;
Maqondo, Luthando ;
Kara, Ravin ;
Milione, Giovanni ;
Cheng, Ling ;
Forbes, Andrew .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (16) :3911-3917
[7]   Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam [J].
Dong, Miao ;
Lu, XingYuan ;
Zhao, Chengliang ;
Cai, Yangjian ;
Yang, Yuanjie .
OPTICS EXPRESS, 2018, 26 (25) :33035-33043
[8]   Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: analysis of channel efficiency [J].
Doster, Timothy ;
Watnik, Abbie T. .
APPLIED OPTICS, 2016, 55 (36) :10239-10246
[9]   Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation [J].
Ghaderi Goran Abad, Mohsen ;
Mahmoudi, Mohammad .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution [J].
Hsieh, Y. H. ;
Lai, Y. H. ;
Hsieh, M. X. ;
Huang, K. F. ;
Chen, Y. F. .
OPTICS EXPRESS, 2018, 26 (24) :31738-31749