Quantum phase transitions in two-dimensional strongly correlated fermion systems

被引:7
作者
Bao, An [1 ,3 ]
Chen, Yao-Hua [2 ]
Lin, Heng-Fu [2 ]
Liu, Hai-Di [2 ]
Zhang, Xiao-Zhong [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Inner Mongolia Univ Sci & Technol, Key Lab Integrated Exploitat Bayan Obo Multi Met, Baotou 014010, Peoples R China
基金
美国国家科学基金会;
关键词
quantum phase transition; two-dimensional lattices; fermions; cellular dynamical mean-field theory; continuous-time quantum Monte Carlo; ELECTRON CORRELATIONS; COLLECTIVE MOTIONS; KAGOME LATTICE; ENERGY; MODELS; TERMS; STATE;
D O I
10.1007/s11467-015-0498-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we review our recent work on quantum phase transition in two-dimensional strongly correlated fermion systems. We discuss the metal-insulator transition properties of these systems by calculating the density of states, double occupancy, and Fermi surface evolution using a combination of the cellular dynamical mean-field theory (CDMFT) and the continuous-time quantum Monte Carlo algorithm. Furthermore, we explore the magnetic properties of each state by defining magnetic order parameters. Rich phase diagrams with many intriguing quantum states, including antiferromagnetic metal, paramagnetic metal, Kondo metal, and ferromagnetic insulator, were found for the two-dimensional lattices with strongly correlated fermions. We believe that our results would lead to a better understanding of the properties of real materials.
引用
收藏
页数:20
相关论文
共 64 条
[11]   Exact results for strongly correlated fermions in 2+1 dimensions [J].
Fendley, P ;
Schoutens, K .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[12]   STRONGLY CORRELATED SYSTEMS IN INFINITE DIMENSIONS AND THEIR ZERO DIMENSIONAL COUNTERPARTS [J].
GEORGES, A ;
KOTLIAR, G ;
SI, QM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (5-6) :705-730
[13]  
Gonzalez M., 1993, Molecular Crystals and Liquid Crystals, V233, P317, DOI 10.1080/10587259308054973
[14]   Continuous-time Monte Carlo methods for quantum impurity models [J].
Gull, Emanuel ;
Millis, Andrew J. ;
Lichtenstein, Alexander I. ;
Rubtsov, Alexey N. ;
Troyer, Matthias ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :349-404
[15]   Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons [J].
Haller, Elmar ;
Hart, Russell ;
Mark, Manfred J. ;
Danzl, Johann G. ;
Reichsoellner, Lukas ;
Gustavsson, Mattias ;
Dalmonte, Marcello ;
Pupillo, Guido ;
Naegerl, Hanns-Christoph .
NATURE, 2010, 466 (7306) :597-U1
[16]   Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base [J].
Haule, Kristjan .
PHYSICAL REVIEW B, 2007, 75 (15)
[17]   Reversible Wurtzite-Tetragonal Reconstruction in ZnO(10(1)over-bar0) Surfaces [J].
He, Mo-Rigen ;
Yu, Rong ;
Zhu, Jing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (31) :7744-7747
[18]   Subangstrom Profile Imaging of Relaxed ZnO(10(1)over-bar0) Surfaces [J].
He, Mo-Rigen ;
Yu, Rong ;
Zhu, Jing .
NANO LETTERS, 2012, 12 (02) :704-708
[19]   Nonlocal dynamical correlations of strongly interacting electron systems [J].
Hettler, MH ;
Tahvildar-Zadeh, AN ;
Jarrell, M ;
Pruschke, T ;
Krishnamurthy, HR .
PHYSICAL REVIEW B, 1998, 58 (12) :R7475-R7479
[20]   THE DESCRIPTION OF COLLECTIVE MOTIONS IN TERMS OF MANY-BODY PERTURBATION THEORY [J].
HUBBARD, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 240 (1223) :539-560