Topological Characterization of Classical Waves: The Topological Origin of Magnetostatic Surface Spin Waves

被引:30
作者
Yamamoto, Kei [1 ,2 ]
Thiang, Guo Chuan [3 ]
Pirro, Philipp [4 ,5 ]
Kim, Kyoung-Whan [2 ,6 ]
Everschor-Sitte, Karin [2 ]
Saitoh, Eiji [1 ,7 ,8 ]
机构
[1] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5000, Australia
[4] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[5] Tech Univ Kaiserslautern, Landesforschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
[6] Korea Inst Sci & Technol, Ctr Spintron, Seoul 02792, South Korea
[7] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[8] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
基金
澳大利亚研究理事会;
关键词
BULK-EDGE CORRESPONDENCE; MODES;
D O I
10.1103/PhysRevLett.122.217201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves, we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.
引用
收藏
页数:5
相关论文
共 31 条
[1]   CRITICAL BEHAVIOR OF MAGNETS WITH DIPOLAR INTERACTIONS .1. RENORMALIZATION GROUP NEAR 4 DIMENSIONS [J].
AHARONY, A ;
FISHER, ME .
PHYSICAL REVIEW B, 1973, 8 (07) :3323-3341
[2]  
An T, 2013, NAT MATER, V12, P549, DOI [10.1038/nmat3628, 10.1038/NMAT3628]
[3]  
[Anonymous], 1989, MATH METHODS CLASSIC
[4]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]
[5]   Scattering of surface and volume spin waves in a magnonic crystal [J].
Chumak, A. V. ;
Serga, A. A. ;
Wolff, S. ;
Hillebrands, B. ;
Kostylev, M. P. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[6]   DIPOLAR SUMS IN THE PRIMITIVE CUBIC LATTICES [J].
COHEN, MH ;
KEFFER, F .
PHYSICAL REVIEW, 1955, 99 (04) :1128-1134
[7]   MAGNETOSTATIC MODES OF A FERROMAGNET SLAB [J].
DAMON, RW ;
ESHBACH, JR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1961, 19 (3-4) :308-320
[8]   SURFACE MAGNETOSTATIC MODES AND SURFACE SPIN WAVES [J].
ESHBACH, JR ;
DAMON, RW .
PHYSICAL REVIEW, 1960, 118 (05) :1208-1210
[9]   FERRIMAGNETIC RESONANCE MODES IN SPHERES [J].
FLETCHER, PC ;
BELL, RO .
JOURNAL OF APPLIED PHYSICS, 1959, 30 (05) :687-698
[10]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)