Impurities and defects in multicrystalline silicon for solar cells: low-temperature photoluminescence investigations

被引:11
作者
Mudryi, AV
Patuk, AI
Shakin, IA
Ulyashin, AG
Job, R
Fahrner, WR
Fedotov, A
Mazanik, A
Drozdov, N
机构
[1] Inst Solid State & Semicond Phys, Minsk 220072, BELARUS
[2] Belarusian State Univ, Minsk 220050, BELARUS
关键词
me-silicon; photoluminescence; strains; residual impurity atoms;
D O I
10.1016/S0927-0248(01)00198-2
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The low-temperature photoluminescence (PL) measurements (down to 4.2K) were employed for the investigations of the defects and impurities in multicrystalline silicon (me-Si) samples grown by block-casting method. The optical properties of as-grown, irradiated by gamma-rays, heat and hydrogen plasma treated samples were studied. It was found that carbon and oxygen as the residual impurity atoms are responsible for the formation of the zero-phonon PL lines with 0.9355 eV (T line) and 0.9652 eV (I line) after heat treatments at about 350-550degreesC. The appearance of PL lines with the energies of 0.9697 eV (A line) and 0.7894 eV (C line) after a gamma-rays irradiation can be attributed to the formation of carbon- and oxygen-related centers, respectively. The comparison of the PL properties of the mc-Si samples with the mono-crystalline one is performed, It is shown that the main peculiarities of the low-temperature PL spectra of me-Si can be explained both by the influence of residual impurities and the residual strains in this material. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:503 / 508
页数:6
相关论文
共 50 条
[21]   Characterization of low-temperature GaAs by galvanomagnetic and photoluminescence measurements [J].
Novak, J ;
Kucera, M ;
Morvic, M ;
Betko, J ;
Forster, A ;
Kordos, P .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 44 (1-3) :341-344
[22]   Giant low-temperature anharmonicity in silicon nanocrystals [J].
Chen, Shuonan ;
Coleman, Devin ;
Abernathy, Douglas L. ;
Banerjee, Arnab ;
Daemen, Luke L. ;
Mangolini, Lorenzo ;
Li, Chen W. .
PHYSICAL REVIEW MATERIALS, 2020, 4 (05)
[23]   Low-temperature photoluminescence of 5CB liquid crystal [J].
Bezrodna, T. ;
Melnyk, V. ;
Vorobjev, V. ;
Puchkovska, G. .
JOURNAL OF LUMINESCENCE, 2010, 130 (07) :1134-1141
[24]   Low-temperature photoluminescence study of SnV centers in HPHT diamond [J].
Razgulov, A. A. ;
Lyapin, S. G. ;
Novikov, A. P. ;
Ekimov, E. A. .
DIAMOND AND RELATED MATERIALS, 2021, 116
[25]   Photoluminescence of low-temperature AlGaAs/GaAs multiple quantum wells [J].
Feng, W ;
Chen, F ;
Huang, Q ;
Zhou, JM .
JOURNAL OF CRYSTAL GROWTH, 1997, 175 :1173-1177
[26]   Low-temperature photoluminescence in self-assembled diphenylalanine microtubes [J].
Nikitin, T. ;
Kopyl, S. ;
Shur, V. Ya ;
Kopelevich, Y. V. ;
Kholkin, A. L. .
PHYSICS LETTERS A, 2016, 380 (18-19) :1658-1662
[27]   Influence of the oxygen content in obtaining tunable and strong photoluminescence from low-temperature grown silicon oxycarbide films [J].
Lin, Zhenxu ;
Guo, Yanqing ;
Song, Chao ;
Song, Jie ;
Wang, Xiang ;
Zhang, Yi ;
Huang, Rui ;
Huang, Xintang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 633 :153-156
[28]   Low-temperature photoluminescence study of GeV centres in HPHT diamond [J].
Razgulov, A. A. ;
Lyapin, S. G. ;
Novikov, A. P. ;
Ekimov, E. A. .
JOURNAL OF LUMINESCENCE, 2022, 242
[29]   Low-temperature photoluminescence studies of In-rich InAlN nanocolumns [J].
Kamimura, Jumpei ;
Kishino, Katsumi ;
Kikuchi, Akihiko .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2012, 6 (03) :123-125
[30]   Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment [J].
Derbali, L. ;
Ezzaouia, H. .
APPLIED SURFACE SCIENCE, 2013, 271 :234-239