Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs

被引:34
作者
Seo, Jiyoun [1 ]
Jin, Daeyong [1 ]
Choi, Chan-Hun [2 ]
Lee, Hyunju [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwanjgu, South Korea
[2] Dongshin Univ, Coll Korean Med, Naju Si, Jeollanam Do, South Korea
来源
PLOS ONE | 2017年 / 12卷 / 01期
基金
新加坡国家研究基金会;
关键词
CELL-PROLIFERATION; BAYESIAN NETWORKS; GENE-EXPRESSION; C-MYC; GLIOBLASTOMA; RECEPTORS; ACTIVATION; STEM; SEQUENCES; APOPTOSIS;
D O I
10.1371/journal.pone.0168412
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various biological processes, and may play oncogenic or tumor suppressive roles. Many studies have investigated the relationships between miRNAs and their target genes, using mRNA and miRNA expression data. However, mRNA expression levels do not necessarily represent the exact gene expression profiles, since protein translation may be regulated in several different ways. Despite this, large-scale protein expression data have been integrated rarely when predicting gene-miRNA relationships. This study explores two approaches for the investigation of gene-miRNA relationships by integrating mRNA expression and protein expression data. First, miRNAs were ranked according to their effects on cancer development. We calculated influence scores for each miRNA, based on the number of significant mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules containing mRNAs, proteins, and miRNAs, in which these three molecular types are highly correlated. The regulatory interactions between miRNA and genes in these modules have been validated based on the direct regulations, indirect regulations, and co-regulations through transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with the miRNA rankings and modules constructed using only mRNA expression data, the rankings and modules constructed using mRNA and protein expression data were shown to have better performance. Additionally, we experimentally verified that miR-504, highly ranked and included in the identified modules, plays a suppressive role in GBM development. We demonstrated that the integration of both expression profiles allows a more precise analysis of gene-miRNA interactions and the identification of a higher number of cancer-related miRNAs and regulatory mechanisms.
引用
收藏
页数:22
相关论文
共 65 条
  • [1] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [2] Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer
    Aure, Miriam Ragle
    Jernstrom, Sandra
    Krohn, Marit
    Vollan, Hans Kristian Moen
    Due, Eldri U.
    Rodland, Einar
    Karesen, Rolf
    Ram, Prahlad
    Lu, Yiling
    Mills, Gordon B.
    Sahlberg, Kristine Kleivi
    Borresen-Dale, Anne-Lise
    Lingjaerde, Ole Christian
    Kristensen, Vessela N.
    [J]. GENOME MEDICINE, 2015, 7
  • [3] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [4] MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay
    Behm-Ansmant, I.
    Rehwinkel, J.
    Izaurralde, E.
    [J]. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2006, 71 : 523 - 530
  • [5] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [6] Targeting ErbB Receptors in High-Grade Glioma
    Berezowska, Sabina
    Schlegel, Juergen
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2011, 17 (23) : 2468 - 2487
  • [7] The Somatic Genomic Landscape of Glioblastoma
    Brennan, Cameron W.
    Verhaak, Roel G. W.
    McKenna, Aaron
    Campos, Benito
    Noushmehr, Houtan
    Salama, Sofie R.
    Zheng, Siyuan
    Chakravarty, Debyani
    Sanborn, J. Zachary
    Berman, Samuel H.
    Beroukhim, Rameen
    Bernard, Brady
    Wu, Chang-Jiun
    Genovese, Giannicola
    Shmulevich, Ilya
    Barnholtz-Sloan, Jill
    Zou, Lihua
    Vegesna, Rahulsimham
    Shukla, Sachet A.
    Ciriello, Giovanni
    Yung, W. K.
    Zhang, Wei
    Sougnez, Carrie
    Mikkelsen, Tom
    Aldape, Kenneth
    Bigner, Darell D.
    Van Meir, Erwin G.
    Prados, Michael
    Sloan, Andrew
    Black, Keith L.
    Eschbacher, Jennifer
    Finocchiaro, Gaetano
    Friedman, William
    Andrews, David W.
    Guha, Abhijit
    Iacocca, Mary
    O'Neill, Brian P.
    Foltz, Greg
    Myers, Jerome
    Weisenberger, Daniel J.
    Penny, Robert
    Kucherlapati, Raju
    Perou, Charles M.
    Hayes, D. Neil
    Gibbs, Richard
    Marra, Marco
    Mills, Gordon B.
    Lander, Eric
    Spellman, Paul
    Wilson, Richard
    [J]. CELL, 2013, 155 (02) : 462 - 477
  • [8] miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1
    Chen, Hanchun
    Lu, Qiong
    Fei, Xifeng
    Shen, Likui
    Jiang, Dongyi
    Dai, Dongwei
    [J]. TUMOR BIOLOGY, 2016, 37 (05) : 6761 - 6768
  • [9] Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    Chin, L.
    Meyerson, M.
    Aldape, K.
    Bigner, D.
    Mikkelsen, T.
    VandenBerg, S.
    Kahn, A.
    Penny, R.
    Ferguson, M. L.
    Gerhard, D. S.
    Getz, G.
    Brennan, C.
    Taylor, B. S.
    Winckler, W.
    Park, P.
    Ladanyi, M.
    Hoadley, K. A.
    Verhaak, R. G. W.
    Hayes, D. N.
    Spellman, Paul T.
    Absher, D.
    Weir, B. A.
    Ding, L.
    Wheeler, D.
    Lawrence, M. S.
    Cibulskis, K.
    Mardis, E.
    Zhang, Jinghui
    Wilson, R. K.
    Donehower, L.
    Wheeler, D. A.
    Purdom, E.
    Wallis, J.
    Laird, P. W.
    Herman, J. G.
    Schuebel, K. E.
    Weisenberger, D. J.
    Baylin, S. B.
    Schultz, N.
    Yao, Jun
    Wiedemeyer, R.
    Weinstein, J.
    Sander, C.
    Gibbs, R. A.
    Gray, J.
    Kucherlapati, R.
    Lander, E. S.
    Myers, R. M.
    Perou, C. M.
    McLendon, Roger
    [J]. NATURE, 2008, 455 (7216) : 1061 - 1068
  • [10] The assembly of miRNA-mRNA-protein regulatory networks using high-throughput expression data
    Chu, Tianjiao
    Mouillet, Jean-Francois
    Hood, Brian L.
    Conrads, Thomas P.
    Sadovsky, Yoel
    [J]. BIOINFORMATICS, 2015, 31 (11) : 1780 - 1787