On complete convergence for arrays of rowwise independent random elements in Banach spaces

被引:32
作者
Hu, TC
Rosalsky, A
Szynal, D
Volodin, AI
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30043, Taiwan
[2] Marie Curie Sklodowska Univ, Dept Math, PL-20031 Lublin, Poland
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Kazan State Univ, Res Inst Math & Mech, Kazan 420008, Tatarstan, Russia
关键词
D O I
10.1080/07362999908809645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend and generalize some recent results on complete convergence (cf. Hu, Moricz, and Taylor [14], Gut [11], Wang, Bhaskara Rao, and Yang [26], Kuczmaszewska and Szynal [17], and Sung [23]) for arrays of rowwise independent Banach space valued random elements. In the main result, no assumptions are made concerning the existence of expected values or absolute moments of the random elements and no assumptions are made concerning the geometry of the underlying Banach space. Some well-known results from the literature are obtained easily as corollaries. The corresponding convergence rates are also established.
引用
收藏
页码:963 / 992
页数:30
相关论文
共 27 条
[1]  
ADLER A, 1999, B I MATH ACAD SINICA, V27
[2]  
ADLER A, 1995, INT J MATH MATH SCI, V18, P33
[3]  
[Anonymous], INT J MATH MATH SCI
[4]  
Araujo A., 1980, The central limit theorem for real and Banach valued random variables
[6]  
Bozorgnia A., 1993, INT J MATH MATH SCI, V16, P587
[7]  
CHOW YS, 1997, PROBABILITY THOERY I
[8]  
DEACOSTA A, 1981, ANN PROBAB, V9, P157
[9]   ON A THEOREM OF HSU AND ROBBINS [J].
ERDOS, P .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :286-291
[10]  
ETEMADI N, 1985, SANKHYA SER A, V47, P215