Refined Chern-Simons versus Vogel universality

被引:15
作者
Krefl, Daniel [1 ]
Schwarz, Albert [2 ]
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Refinement; Chern-Simons theory; Topological strings;
D O I
10.1016/j.geomphys.2013.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relation between the partition function of refined SU(N) and SO(2N) Chern-Simons on the 3-sphere and the universal Chern-Simons partition function in the sense of Mkrtchyan and Veselov. We find a four-parameter generalization of the integral representation of universal Chern-Simons that includes refined SU(N) and SO(2N) Chern-Simons for special values of parameters. The large N expansion of the integral representation of refined SU(N) Chern-Simons explicitly shows the replacement of the virtual Euler characteristic of the moduli space of complex curves with a refined Euler characteristic related to the radius deformed c = 1 string free energy. (C) 2013 Elsevier RV. All rights reserved.
引用
收藏
页码:119 / 129
页数:11
相关论文
共 21 条
  • [1] Aganagic M., 2012, J HIGH ENERGY PHYS, V1209, P084
  • [2] Aganagic M., ARXIV12022489HEPTH
  • [3] Aganagic M., ARXIV11055117HEPTH
  • [4] [Anonymous], 1999, PREPRINT
  • [5] HOLOMORPHIC ANOMALIES IN TOPOLOGICAL FIELD-THEORIES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. NUCLEAR PHYSICS B, 1993, 405 (2-3) : 279 - 304
  • [6] KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) : 311 - 427
  • [7] Gopakumar R., 1999, Adv. Theor. Math. Phys, V3, P1415, DOI [10.4310/ATMP.1999.v3.n5.a5, DOI 10.4310/ATMP.1999.V3.N5.A5]
  • [8] Gopakumar R., HEP TH 9809187, V1
  • [9] A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves
    Goulden, IP
    Harer, JL
    Jackson, DM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) : 4405 - 4427
  • [10] ONE-DIMENSIONAL STRING THEORY ON A CIRCLE
    GROSS, DJ
    KLEBANOV, I
    [J]. NUCLEAR PHYSICS B, 1990, 344 (03) : 475 - 498