Ratio asymptotics and weak asymptotic measures for orthogonal polynomials on the real line

被引:16
作者
Simon, B [1 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
polynomials; asymptotics; Jacobi matrices;
D O I
10.1016/j.jat.2003.12.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study ratio asymptotics, that is, existence of the limit of Pn+1(z)/P-n(z) (P-n = monic orthogonal polynomial) and the existence of weak limits of p(n)(2)dmu (p(n) = P-n/parallel toP(n)parallel to) as n --> infinity for orthogonal polynomials on the real line. We show existence of ratio asymptotics at a single z(0) with Im(z(0)) not equal 0 implies dmu is in a Nevai class (i.e., a(n) --> a and b(n) --> b where a(n), b(n) are the off-diagonal and diagonal Jacobi parameters). For mu's with bounded support, we prove p(n)(2)dmu has a weak limit if and only if lim b(n), lim a(2n), and lim a(2n+1) all exist. In both cases, we write down the limits explicitly. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 217
页数:20
相关论文
共 15 条
[11]  
NEVAI PG, 1979, MEM AM MATH SOC, V18, P1
[12]  
Poincare H., 1885, AM J MATH, V7, P203, DOI DOI 10.2307/2369270
[13]  
Simon, 2004, ORTHOGONAL POLYNOMIA
[14]   The classical moment problem as a self-adjoint finite difference operator [J].
Simon, B .
ADVANCES IN MATHEMATICS, 1998, 137 (01) :82-203
[15]  
Szego G, 1967, Orthogonal polynomials, V23