Ratio asymptotics and weak asymptotic measures for orthogonal polynomials on the real line

被引:16
作者
Simon, B [1 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
polynomials; asymptotics; Jacobi matrices;
D O I
10.1016/j.jat.2003.12.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study ratio asymptotics, that is, existence of the limit of Pn+1(z)/P-n(z) (P-n = monic orthogonal polynomial) and the existence of weak limits of p(n)(2)dmu (p(n) = P-n/parallel toP(n)parallel to) as n --> infinity for orthogonal polynomials on the real line. We show existence of ratio asymptotics at a single z(0) with Im(z(0)) not equal 0 implies dmu is in a Nevai class (i.e., a(n) --> a and b(n) --> b where a(n), b(n) are the off-diagonal and diagonal Jacobi parameters). For mu's with bounded support, we prove p(n)(2)dmu has a weak limit if and only if lim b(n), lim a(2n), and lim a(2n+1) all exist. In both cases, we write down the limits explicitly. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 217
页数:20
相关论文
共 15 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]   LOCATION OF ZEROS AND ASYMPTOTICS OF POLYNOMIALS SATISFYING 3-TERM RECURRENCE RELATIONS WITH COMPLEX COEFFICIENTS [J].
BARRIOS, D ;
LOPEZ, G ;
TORRANO, E .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 80 (02) :309-333
[3]   Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle [J].
Cantero, MJ ;
Moral, L ;
Velázquez, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :29-56
[4]  
Gelfond A. O., 1971, CALCULUS FINITE DIFF
[5]  
Geronimus Ya. L., 1961, ORTHOGONAL POLYNOMIA
[6]   m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices [J].
Gesztesy, F ;
Simon, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 :267-297
[7]   Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in L2(T) [J].
Khrushchev, S .
JOURNAL OF APPROXIMATION THEORY, 2001, 108 (02) :161-248
[8]   Classification theorems for general orthogonal polynomials on the unit circle [J].
Khrushchev, SV .
JOURNAL OF APPROXIMATION THEORY, 2002, 116 (02) :268-342
[9]  
KILLIP R, IN PRESS ANN MATH
[10]  
NEVAI P, 1989, APPROXIMATION THEORY, V2, P449