Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations

被引:8
作者
Alegria, Carlos [1 ]
Orden, David [2 ]
Seara, Carlos [3 ]
Urrutia, Jorge [4 ]
机构
[1] Univ Roma Tre, Dipartimento Ingn, Rome, Italy
[2] Univ Alcala, Dept Fis & Matemat, Madrid, Spain
[3] Univ Politecn Cataluna, Dept Matemat, Barcelona, Spain
[4] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
基金
芬兰科学院;
关键词
Rectilinear convex hull; Restricted orientation convex hull; Minimum area; MAXIMA; SET;
D O I
10.1007/s10898-020-00953-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let P be a set of n points in the plane. We compute the value of theta is an element of [0, 2 pi) for which the rectilinear convex hull of P, denoted by RHP(theta), has minimum (or maximum) area in optimal O(n log n) time and O(n) space, improving the previous O(n(2)) bound. Let O be a set of k lines through the origin sorted by slope and let ai be the sizes of the 2k angles defined by pairs of two consecutive lines, i = 1,..., 2k. Let Theta(i) = pi - alpha(i) and Theta = min{Theta(i) : i = 1,..., 2k}. We obtain: (1) Given a set O such that Theta >= pi/2, we provide an algorithm to compute the O-convex hull of P in optimal O(n log n) time and O(n) space; If Theta < pi/2, the time and space complexities are O(n/Theta log n) and O(n/Theta) respectively. (2) Given a set O such that Theta >= pi/2, we compute and maintain the boundary of the O-theta-convex hull of P for theta is an element of [0, 2 pi) in O(kn log n) time and O(kn) space, or if Theta < pi/2, in O(k n/Theta log n) time and O(k n/Theta) space. (3) Finally, given a set O such that Theta >= pi/2, we compute, in O(kn log n) time and O(kn) space, the angle theta is an element of [0, 2 pi) such that the O-theta-convex hull of P has minimum (or maximum) area over all theta is an element of [0, 2 pi).
引用
收藏
页码:687 / 714
页数:28
相关论文
共 34 条
  • [21] Convex and concave hulls for classification with support vector machine
    Lopez Chau, Asdrubal
    Li, Xiaoou
    Yu, Wen
    [J]. NEUROCOMPUTING, 2013, 122 : 198 - 209
  • [22] On functional separately convex hulls
    Matousek, J
    Plechac, P
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (01) : 105 - 130
  • [23] Montuno DY, 1982, FINDING XY CONVEX HU
  • [24] ON THE X-Y CONVEX-HULL OF A SET OF X-Y POLYGONS
    NICHOLL, TM
    LEE, DT
    LIAO, YZ
    WONG, CK
    [J]. BIT, 1983, 23 (04): : 456 - 471
  • [25] ON THE DEFINITION AND COMPUTATION OF RECTILINEAR CONVEX HULLS
    OTTMANN, T
    SOISALONSOININEN, E
    WOOD, D
    [J]. INFORMATION SCIENCES, 1984, 33 (03) : 157 - 171
  • [26] Preparata FP., 1985, COMPUTATIONAL GEOMET
  • [27] RAICU DS, 2004, P 8 WORLD MULT SYST
  • [28] Rawlins GJE, 1988, ORTHO CONVEXITY ITS
  • [29] Separating bichromatic point sets by L-shapes
    Sheikhi, Farnaz
    Mohades, Ali
    de Berg, Mark
    Davoodi, Mansoor
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (09): : 673 - 687
  • [30] MSSQ: Manhattan Spatial Skyline Queries
    Son, Wanbin
    Hwang, Seung-Won
    Ahn, Hee-Kap
    [J]. INFORMATION SYSTEMS, 2014, 40 : 67 - 83