Korovkin Type Approximation Theorems via Lacunary Equistatistical Convergence

被引:6
作者
Alotaibi, Abdullah [1 ]
Mursaleen, M. [2 ]
机构
[1] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Statistical convergence; lacunary equistatistical convergence; positive linear operator; Korovkin type approximation theorem; WEIGHTED STATISTICAL CONVERGENCE; LINEAR-OPERATORS; SUMMABILITY;
D O I
10.2298/FIL1613641A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
H. Aktuglu and H. Gezer [Central European J. Math. 7 (2009), 558- 567] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. In this paper, we apply the notion of lacunary equistatistical convergence to prove a Korovkin type approximation theorem by using test functions 1, x/1-x, (x/1-x)(2).
引用
收藏
页码:3641 / 3647
页数:7
相关论文
共 23 条
[1]   Lacunary equi-statistical convergence of positive linear operators [J].
Aktuglu, Hueseyin ;
Gezer, Halil .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (03) :558-567
[2]  
[Anonymous], 1960, RUSSIAN MONOGRAPHS T
[3]   Weighted Approximation by New Bernstein-Chlodowsky-Gadjiev Operators [J].
Aral, Ali ;
Acar, Tuncer .
FILOMAT, 2013, 27 (02) :371-380
[4]   Statistical convergence and ideal convergence for sequences of functions [J].
Balcerzak, Marek ;
Dems, Katarzyna ;
Komisarski, Andrzej .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :715-729
[5]   Generalized weighted statistical convergence and application [J].
Belen, C. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) :9821-9826
[6]   A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean [J].
Braha, Naim L. ;
Srivastava, H. M. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 :162-169
[7]   Korovkin type approximation theorems obtained through generalized statistical convergence [J].
Edely, Osama H. H. ;
Mohiuddine, S. A. ;
Noman, Abdullah K. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (11) :1382-1387
[8]  
FAST H., 1951, Colloq. Math., V2, P241
[9]   LACUNARY STATISTICAL CONVERGENCE [J].
FRIDY, JA ;
ORHAN, C .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 160 (01) :43-51
[10]   Some approximation theorems via statistical convergence [J].
Gadjiev, AD ;
Orhan, C .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (01) :129-138