Time development of a quasistationary state

被引:32
作者
Dicus, DA [1 ]
Repko, WW
Schwitters, RF
Tinsley, TM
机构
[1] Univ Texas, Ctr Particle Phys, Austin, TX 78712 USA
[2] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevA.65.032116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Approximately 40 years ago it was realized that the time development of decaying systems might not be precisely exponential. Winter [Phys. Rev. 123, 1503 (1961)] analyzed the simplest nontrivial system-a particle tunneling out of a well formed by a wall and delta function. He calculated the probability current just outside the well and found irregular oscillations on a short-time scale followed by an exponential decrease followed by more oscillations and finally by a decrease as a power of the time. We have reanalyzed this system, concentrating on the survival probability of the particle in the well rather than the probability current, and find a different short-time behavior.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 19 条
[11]   Acceleration of quantum decay processes by frequent observations [J].
Kofman, AG ;
Kurizki, G .
NATURE, 2000, 405 (6786) :546-550
[12]   INTERACTION-FREE MEASUREMENT [J].
KWIAT, P ;
WEINFURTER, H ;
HERZOG, T ;
ZEILINGER, A ;
KASEVICH, MA .
PHYSICAL REVIEW LETTERS, 1995, 74 (24) :4763-4766
[13]  
MISRA B, 1977, J MATH PHYS, V18, P756, DOI 10.1063/1.523304
[14]   How Landau-Zener tunneling takes time [J].
Niu, Q ;
Raizen, MG .
PHYSICAL REVIEW LETTERS, 1998, 80 (16) :3491-3494
[15]   TESTS OF THE EXPONENTIAL DECAY LAW AT SHORT AND LONG TIMES [J].
NORMAN, EB ;
GAZES, SB ;
CRANE, SG ;
BENNETT, DA .
PHYSICAL REVIEW LETTERS, 1988, 60 (22) :2246-2249
[16]  
Sakurai J. J., 1994, MODERN QUANTUM MECH
[17]   NUMERICAL STUDY OF ZENO AND ANTI-ZENO EFFECTS IN A LOCAL POTENTIAL MODEL [J].
SCHIEVE, WC ;
HORWITZ, LP ;
LEVITAN, J .
PHYSICS LETTERS A, 1989, 136 (06) :264-268
[18]   Experimental evidence for non-exponential decay in quantum tunnelling [J].
Wilkinson, SR ;
Bharucha, CF ;
Fischer, MC ;
Madison, KW ;
Morrow, PR ;
Niu, Q ;
Sundaram, B ;
Raizen, MG .
NATURE, 1997, 387 (6633) :575-577
[19]   EVOLUTION OF A QUASI-STATIONARY STATE [J].
WINTER, RG .
PHYSICAL REVIEW, 1961, 123 (04) :1503-+