Eradicating Antibiotic-Resistant Biofilms with Silver-Conjugated Superparamagnetic Iron Oxide Nanoparticles

被引:39
作者
Durmus, Naside Gozde [1 ]
Webster, Thomas J. [1 ,2 ,3 ]
机构
[1] Brown Univ, Sch Engn, Ctr Biomed Engn, Providence, RI 02912 USA
[2] Brown Univ, Sch Engn, Providence, RI 02912 USA
[3] Brown Univ, Dept Orthoped, Providence, RI 02912 USA
关键词
STAPHYLOCOCCUS-AUREUS; ANTIBACTERIAL PROPERTIES; PSEUDOMONAS-AERUGINOSA; GOLD NANOPARTICLES; SIZE; INFECTIONS; MECHANISM; PROMOTION; STRAINS; TRENDS;
D O I
10.1002/adhm.201200215
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Concerns about antibiotic-resistant microorganisms, such as methicillin-resistant Staphylococcus aureus (MRSA), is causing a resurgence in the search for novel strategies which can eradicate infections without the use of antibiotics. In this study, the unique magnetic and antibacterial properties of superparamagnetic iron oxide nanoparticles (SPION) and silver have been combined through the design of silver-conjugated SPION. For the first time, it is demonstrated that MRSA biofilms can be eradicated by silver-conjugated SPION without resorting to the use of antibiotics. A significant decrease in biofilm mass, which corresponds to a seven orders of magnitude decrease in viability, is observed when MRSA biofilms are treated with 1 mg/mL of silver-conjugated SPION (p < 0.01). Moreover, SPION anti-biofilm efficacy is further improved in the presence of an external magnetic field. The anti-biofilm property of silver-conjugated SPION treatment is due to the significant increases in intracellular or membrane-bound iron (p < 0.001), sulfur (p < 0.05), and silver (p < 0.001) concentrations, thus increases in SPION uptake within the biofilms. For this reason, this study demonstrates for the first time that silver-conjugated SPION could be used as a targeted antibacterial therapy to the infection site. Thus, this novel infection eradication strategy holds great promise to be an alternative to the antibiotic of last resort, vancomycin, which bacteria have already started to develop a resistance towards.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 51 条
[1]   An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J].
Alt, V ;
Bechert, T ;
Steinrücke, P ;
Wagener, M ;
Seidel, P ;
Dingeldein, E ;
Domann, E ;
Schnettler, R .
BIOMATERIALS, 2004, 25 (18) :4383-4391
[2]   Synthesis and antibacterial properties of silver nanoparticles [J].
Baker, C ;
Pradhan, A ;
Pakstis, L ;
Pochan, DJ ;
Shah, SI .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (02) :244-249
[3]   Infection control - A problem for patient safety [J].
Burke, JP .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (07) :651-656
[4]  
Chambers CW, 1962, J AM WATER WORKS ASS, V54, P208, DOI DOI 10.1002/J.1551-8833.1962.TB00834.X
[5]   Waves of resistance: Staphylococcus aureus in the antibiotic era [J].
Chambers, Henry F. ;
DeLeo, Frank R. .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (09) :629-641
[6]   Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria [J].
Choi, Okkyoung ;
Hu, Zhiqiang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4583-4588
[7]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322
[8]   The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli [J].
Cui, Yan ;
Zhao, Yuyun ;
Tian, Yue ;
Zhang, Wei ;
Lu, Xiaoying ;
Jiang, Xingyu .
BIOMATERIALS, 2012, 33 (07) :2327-2333
[9]   Microbial biofilms: from ecology to molecular genetics [J].
Davey, ME ;
O'toole, GA .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2000, 64 (04) :847-+
[10]   Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles [J].
Dobrovolskaia, Marina A. ;
Patri, Anil K. ;
Zheng, Jiwen ;
Clogston, Jeffrey D. ;
Ayub, Nader ;
Aggarwal, Parag ;
Neun, Barry W. ;
Hall, Jennifer B. ;
McNeil, Scott E. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2009, 5 (02) :106-117