Multifractal modeling and spatial statistics

被引:139
作者
Cheng, QM [1 ]
Agterberg, FP [1 ]
机构
[1] GEOL SURVEY CANADA, OTTAWA, ON K1A 0E8, CANADA
来源
MATHEMATICAL GEOLOGY | 1996年 / 28卷 / 01期
关键词
autocorrelation; fractals; mass exponents; multifractal spectrum; semivariogram; spatial covariance;
D O I
10.1007/BF02273520
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In general, the multifractal model provides more information about measurements on spatial objects than a fractal model. it also results in mathematical equations for the covariance function and semivariogram in spatial statistics which are determined primarily by the second-order mass exponent. However, these equations can be approximated by power-law relations which are comparable directly to equations based on fractal modeling. The multifractal approach is used to describe the underlying spatial structure of De Wijs's example of zinc values from a sphalerite-bearing quartz vein near Pulacayo, Bolivia. It is shown that these data are multifractal instead of fractal, and that the second-order mass exponent (= 0.979 +/- 0.011 for the example) can be used in spatial statistical analysis.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 23 条
[1]  
AGTERBERG FP, 1994, QUANT GEO G, V6, P223
[2]  
AGTERBERG FP, 1993, APPL COMPUTERS OPERA, V1, P43
[3]  
Bartlett M. S., 1966, INTRO STOCHASTIC PRO
[4]  
Billingsley P., 1986, PROBABILITY MEASURE
[5]  
CHENG Q, 1994, THESIS U OTTAWA OTTA
[6]   THE SEPARATION OF GEOCHEMICAL ANOMALIES FROM BACKGROUND BY FRACTAL METHODS [J].
CHENG, QM ;
AGTERBERG, FP ;
BALLANTYNE, SB .
JOURNAL OF GEOCHEMICAL EXPLORATION, 1994, 51 (02) :109-130
[7]   MULTIFRACTAL MODELING AND SPATIAL POINT-PROCESSES [J].
CHENG, QM ;
AGTERBERG, FP .
MATHEMATICAL GEOLOGY, 1995, 27 (07) :831-845
[8]  
Csorgo M., 1981, Probability and Mathematical Statistics
[9]   MASS MULTIFRACTALS [J].
VICSEK, T .
PHYSICA A, 1990, 168 (01) :490-497
[10]  
Evertz C.J.G., 1992, Chaos and Fractals, P922