Implementing Dynamic Clamp with Synaptic and Artificial Conductances in Mouse Retinal Ganglion Cells
被引:3
作者:
Huang, Jin Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sydney Med Sch, Sch Med Sci, Discipline Biomed Sci, Sydney, NSW 2006, Australia
Univ Sydney, Bosch Inst, Sydney, NSW 2006, AustraliaUniv Sydney, Sydney Med Sch, Sch Med Sci, Discipline Biomed Sci, Sydney, NSW 2006, Australia
Huang, Jin Y.
[1
,2
]
Stiefel, Klaus M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Sydney, MARCS Inst, Penrith, NSW 1797, AustraliaUniv Sydney, Sydney Med Sch, Sch Med Sci, Discipline Biomed Sci, Sydney, NSW 2006, Australia
Stiefel, Klaus M.
[3
]
Protti, Dario A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Bosch Inst, Sydney, NSW 2006, Australia
Univ Sydney, Sydney Med Sch, Sch Med Sci, Discipline Physiol, Sydney, NSW 2006, AustraliaUniv Sydney, Sydney Med Sch, Sch Med Sci, Discipline Biomed Sci, Sydney, NSW 2006, Australia
Protti, Dario A.
[2
,4
]
机构:
[1] Univ Sydney, Sydney Med Sch, Sch Med Sci, Discipline Biomed Sci, Sydney, NSW 2006, Australia
[2] Univ Sydney, Bosch Inst, Sydney, NSW 2006, Australia
[3] Univ Western Sydney, MARCS Inst, Penrith, NSW 1797, Australia
[4] Univ Sydney, Sydney Med Sch, Sch Med Sci, Discipline Physiol, Sydney, NSW 2006, Australia
来源:
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
|
2013年
/
75期
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.
机构:
SUNY Coll Optometry, Dept Biol & Vis Sci, New York, NY USASUNY Coll Optometry, Dept Biol & Vis Sci, New York, NY USA
Kumar, Sandeep
Akopian, Abram
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Coll Optometry, Dept Biol & Vis Sci, New York, NY USASUNY Coll Optometry, Dept Biol & Vis Sci, New York, NY USA
Akopian, Abram
Bloomfield, Stewart A.
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Coll Optometry, Dept Biol & Vis Sci, New York, NY USA
SUNY Coll Optometry, Dept Biol & Vis Sci, 33 West 42nd St, New York, NY 10036 USASUNY Coll Optometry, Dept Biol & Vis Sci, New York, NY USA