On the Einstein relation for a mechanical system

被引:5
作者
Boldrighini, C [1 ]
Soloveitchik, M [1 ]
机构
[1] UNIV HEIDELBERG,INST ANGEW MATH,D-69120 HEIDELBERG,GERMANY
关键词
D O I
10.1007/s004400050095
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a mechanical model in the plane, consisting of a vertical rod, subject to a constant horizontal force f and to elastic collisions with the particles of a free gas which is ''horizontally'' in equilibrium at some inverse temperature beta. In a previous paper we proved that, in the appropriate space and time scaling, the motion of the rod is described as a drift ten plus a diffusion term. In this paper we prove that the drift d(f) and the diffusivity sigma(2)(f) are continuous functions of f, and moreover that the Einstein relation holds, i.e., lim/(f-->0) d(f)/f = beta/2 sigma(2) (0).
引用
收藏
页码:493 / 515
页数:23
相关论文
共 11 条
[1]   DRIFT AND DIFFUSION FOR A MECHANICAL SYSTEM [J].
BOLDRIGHINI, C ;
SOLOVEITCHIK, M .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 103 (03) :349-379
[2]   DIFFUSION AND EINSTEIN RELATION FOR A MASSIVE PARTICLE IN A ONE-DIMENSIONAL FREE FAS - NUMERICAL EVIDENCE [J].
BOLDRIGHINI, C ;
COSIMI, GC ;
FRIGIO, S .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) :1241-1250
[3]   THE SMOLUCHOWSKI LIMIT FOR A SIMPLE MECHANICAL MODEL [J].
CALDERONI, P ;
DURR, D .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :695-738
[4]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[5]  
DURR D, 1989, STOCHASTIC PROCESSES, V262, P187
[6]  
Einstein A, 1906, ANN PHYS-BERLIN, V19, P371
[8]  
Ferrari P. A., 1985, Statistical Physics and Dynamical Systems: Rigorous Results
[9]  
LEBOWITZ JL, 1994, 9415 HEID U
[10]  
NUMMELIN E, 1989, GENERAL IRREDUCIBLE