Global solutions to time-dependent Ginzburg-Landau-Chern-Simons equations

被引:1
作者
Huh, Hyungjin [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Ginzburg-Landau-Chern-Simons; Coulomb gauge; Global existence; MAXWELL EQUATIONS; SYSTEM;
D O I
10.1016/j.jmaa.2017.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a time-dependent Ginzburg-Landau-Chern-Simons model. The local existence of solutions to the model in a bounded domain Omega is proved by applying contraction mapping theorem. We use covariant energy estimate to extend a local solution to global one. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:714 / 726
页数:13
相关论文
共 28 条
[21]   SELF-DUAL CHERN-SIMONS VORTICES [J].
JACKIW, R ;
WEINBERG, EJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2234-2237
[22]   CLASSICAL AND QUANTAL NONRELATIVISTIC CHERN-SIMONS THEORY [J].
JACKIW, R ;
PI, SY .
PHYSICAL REVIEW D, 1990, 42 (10) :3500-3513
[23]  
Liu B., 2014, INT MATH RES NOTICES, P6311
[24]  
Nirenberg L., 1959, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V13, P115
[25]   ON AN EVOLUTIONARY SYSTEM OF GINZBURG-LANDAU EQUATIONS WITH FIXED TOTAL MAGNETIC-FLUX [J].
QI, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :1-36
[26]  
Qiang Du, 1994, Applicable Analysis, V53, P1
[27]   GLOBAL WELL-POSEDNESS OF THE CHERN-SIMONS-HIGGS EQUATIONS WITH FINITE ENERGY [J].
Selberg, Sigmund ;
Tesfahun, Achenef .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2531-2546
[28]   The time-dependent Ginzburg-Landau Maxwell equations [J].
Tsutsumi, M ;
Kasai, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) :187-216