Global solutions to time-dependent Ginzburg-Landau-Chern-Simons equations

被引:1
作者
Huh, Hyungjin [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Ginzburg-Landau-Chern-Simons; Coulomb gauge; Global existence; MAXWELL EQUATIONS; SYSTEM;
D O I
10.1016/j.jmaa.2017.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a time-dependent Ginzburg-Landau-Chern-Simons model. The local existence of solutions to the model in a bounded domain Omega is proved by applying contraction mapping theorem. We use covariant energy estimate to extend a local solution to global one. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:714 / 726
页数:13
相关论文
共 28 条
[1]  
[Anonymous], 2010, GRAD STUD MATH
[2]  
[Anonymous], 2000, MATH INTRO FLUID MEC
[3]   BLOWING-UP TIME-DEPENDENT SOLUTIONS OF THE PLANAR, CHERN-SIMONS GAUGED NONLINEAR SCHRODINGER-EQUATION [J].
BERGE, L ;
DEBOUARD, A ;
SAUT, JC .
NONLINEARITY, 1995, 8 (02) :235-253
[4]   Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations [J].
Berti, Valeria ;
Gatti, Stefania .
QUARTERLY OF APPLIED MATHEMATICS, 2006, 64 (04) :617-639
[5]   A NOTE ON THE CHERN-SIMONS-DIRAC EQUATIONS IN THE COULOMB GAUGE [J].
Bournaveas, Nikolaos ;
Candy, Timothy ;
Machihara, Shuji .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (07) :2693-2701
[6]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[7]   FERMIONIC VORTEX SOLUTIONS IN CHERN-SIMONS ELECTRODYNAMICS [J].
CHO, YM ;
KIM, JW ;
PARK, DH .
PHYSICAL REVIEW D, 1992, 45 (10) :3802-3806
[8]  
Crasselli M., 2008, SIAM J MATH ANAL, V40, P2007
[9]  
DEMOULINI S, 1997, COMMUN ANAL GEOM, V5, P121
[10]   Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface [J].
Demoulini, Sophia .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (02) :207-225