Robust multi-feature visual tracking via multi-task kernel-based sparse learning

被引:16
作者
Kang, Bin [1 ]
Zhu, Wei-Ping [2 ]
Liang, Dong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Jiangsu, Peoples R China
[2] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
image representation; learning (artificial intelligence); object tracking; image fusion; feature selection; multitask sparse reconstruction; correlated particle observation selection; mixed norm; sparse representation method; kernel weights; Fisher discrimination criterion-based multiobjective model; optimal multifeature fusion; multitask kernel-based sparse learning method; robust multifeature visual tracking; OBJECT TRACKING; REPRESENTATION;
D O I
10.1049/iet-ipr.2016.1062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection and fusion is of crucial importance in multi-feature visual tracking. This study proposes a multi-task kernel-based sparse learning method for multi-feature visual tracking. The proposed sparse learning method can discriminate the reliable and unreliable features for optimal multi-feature fusion through using a Fisher discrimination criterion-based multi-objective model to adaptively train the kernel weights of different features such as pixel intensity, edge and texture. To guarantee a robustness of the sparse representation method, a mixed norm is employed in the sparse leaning method to adaptively select correlated particle observations for multi-task sparse reconstruction. Experimental results show that the proposed sparse learning method can achieve a better tracking performance than state-of-the-art tracking methods do.
引用
收藏
页码:1172 / 1178
页数:7
相关论文
共 46 条
[1]  
[Anonymous], 2011, MACH LEARN RES
[2]  
[Anonymous], IEEE C COMP VIS PATT
[3]  
[Anonymous], 2012, PROC CVPR IEEE
[4]  
Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
[5]   Visual tracking via adaptive multi-task feature learning with calibration and identification [J].
Chen, Pengguang ;
Zhang, Xingming ;
Mao, Aihua ;
Xiong, Jianbin .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 49 :17-24
[6]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]  
Duda RO., 1973, PATTERN CLASSIFICATI
[9]   Sparse Representation With Kernels [J].
Gao, Shenghua ;
Tsang, Ivor Wai-Hung ;
Chia, Liang-Tien .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) :423-434
[10]   Particle filters for positioning, navigation, and tracking [J].
Gustafsson, F ;
Gunnarsson, F ;
Bergman, N ;
Forssell, U ;
Jansson, J ;
Karlsson, R ;
Nordlund, PJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :425-437