Random matrices and complexity of spin glasses

被引:175
作者
Auffinger, Antonio [1 ]
Ben Arous, Gerard [1 ]
Cerny, Jiri [2 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
MODEL;
D O I
10.1002/cpa.21422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an asymptotic evaluation of the complexity of spherical p-spin spin glass models via random matrix theory. This study enables us to obtain detailed information about the bottom of the energy landscape, including the absolute minimum (the ground state), and the other local minima, and describe an interesting layered structure of the low critical values for the Hamiltonians of these models. We also show that our approach allows us to compute the related TAP-complexity and extend the results known in the physics literature. As an independent tool, we prove a large deviation principle for the kth-largest eigenvalue of the Gaussian orthogonal ensemble, extending the results of Ben Arous, Dembo, and Guionnet. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:165 / 201
页数:37
相关论文
共 20 条
[1]  
Adler Robert J, 2007, RANDOM FIELDS GEOMET, V80
[2]  
Auffinger A., COMPLEXITY RANDOM SM
[3]  
Azai's JM., 2009, LEVEL SETS EXTREMA R
[4]  
Ben Arous G, 2001, PROBAB THEORY REL, V120, P1
[5]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[6]  
CRISANTI A, 1995, J PHYS I, V5, P805, DOI 10.1051/jp1:1995164
[7]  
Crisanti A, 2003, EUR PHYS J B, V36, P129, DOI 10.1140/epjb/e2003-00325-x
[8]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO
[9]  
2-#
[10]   Universality in random matrix theory for orthogonal and symplectic ensembles [J].
Deift, Percy ;
Gioev, Dimitri .
INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2007,