NOTES ON THE FIDELITY OF SYMPLECTIC QUANTUM ERROR-CORRECTING CODES

被引:12
作者
Hamada, Mitsuru [1 ]
机构
[1] Japan Sci & Technol Agcy, Quantum Computat & Informat Project, ERATO Program, Bunkyo Ku, Tokyo 1130033, Japan
关键词
Symplectic codes; fidelity; entanglement;
D O I
10.1142/S0219749903000358
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two observations are given on the fidelity of schemes for quantum information processing. In the first one, we show that the fidelity of a symplectic (stabilizer) code, if properly defined, exactly equals the "probability" of the correctable errors for general quantum channels. The second observation states that for any coding rate below the quantum capacity, exponential convergence of the fidelity of some codes to unity is possible.
引用
收藏
页码:443 / 463
页数:21
相关论文
共 36 条
[1]  
Artin E., 1957, GEOMETRIC ALGEBRA
[2]   On quantum fidelities and channel capacities [J].
Barnum, H ;
Knill, E ;
Nielsen, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1317-1329
[3]  
Bennett C.H., 1984, P IEEE INT C COMP SY, V175, P8, DOI DOI 10.1016/J.TCS.2014.05.025
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[6]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[7]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[8]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[9]  
DEVETAK I, QUANTPH0304127
[10]  
Devetak I., QUNATPH0306078