Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell

被引:168
作者
Lee, D. C. [1 ]
Yang, H. N. [1 ]
Park, S. H. [1 ]
Kim, W. J. [1 ]
机构
[1] Konkuk Univ, Coll Engn, Dept Mat Chem & Engn, Neung Dong Ro 120, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene oxide; Water uptake; Proton conductivity; Cell performance; OCV; FUNCTIONALIZED GRAPHENE OXIDE; NANOCOMPOSITE MEMBRANE; HIGH-TEMPERATURE; LOW-HUMIDITY; PEMFC; ACID; HUMIDIFICATION; NANOPARTICLES; PERFORMANCE; REDUCTION;
D O I
10.1016/j.memsci.2013.10.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8 rim in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802 A, 1.27 A, 0.827 A at 0.6 V under 100% relative humidify (RH) for 0.5 wt%, 3.0 wt% and 4.5 wt% of GO content in the composite membrane, respectively, compared to 0.435 A for casting Nafion membrane. The Nafion/PL-G composite membrane, however, does not show sufficient enhancement under various RHs It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 57 条
[31]   Polymer-zeolite composite membranes for direct methanol fuel cells [J].
Libby, B ;
Smyrl, WH ;
Cussler, EL .
AICHE JOURNAL, 2003, 49 (04) :991-1001
[32]   Reinforced and self-humidifying composite membrane for fuel cell applications [J].
Liu, Yonghao ;
Nguyen, Tienhoa ;
Kristian, Noel ;
Yu, Yaolun ;
Wang, Xin .
JOURNAL OF MEMBRANE SCIENCE, 2009, 330 (1-2) :357-362
[33]   Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity [J].
Mahreni, A. ;
Mohamad, A. B. ;
Kadhum, A. A. H. ;
Daud, W. R. W. ;
Iyuke, S. E. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 327 (1-2) :32-40
[34]   Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J].
McAllister, Michael J. ;
Li, Je-Luen ;
Adamson, Douglas H. ;
Schniepp, Hannes C. ;
Abdala, Ahmed A. ;
Liu, Jun ;
Herrera-Alonso, Margarita ;
Milius, David L. ;
Car, Roberto ;
Prud'homme, Robert K. ;
Aksay, Ilhan A. .
CHEMISTRY OF MATERIALS, 2007, 19 (18) :4396-4404
[35]   WORK FUNCTION OF ELEMENTS AND ITS PERIODICITY [J].
MICHAELSON, HB .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (11) :4729-4733
[36]  
Moudler J.F., 1992, HDB XRAY PHOTOELECTR, V1992, P235
[37]  
Noto V.D., 2006, J PHYS CHEM B, V110, P24972
[38]   An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects [J].
Pant, Deepak ;
Singh, Anoop ;
Van Bogaert, Gilbert ;
Gallego, Yolanda Alvarez ;
Diels, Ludo ;
Vanbroekhoven, Karolien .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (02) :1305-1313
[39]   XPS and NMR studies of phosphoric acid activated carbons [J].
Puziy, A. M. ;
Poddubnaya, O. I. ;
Socha, R. P. ;
Gurgul, J. ;
Wisniewski, M. .
CARBON, 2008, 46 (15) :2113-2123
[40]   Effect of particle size reduction on the conductivity of Nafion®/phosphotungstic acid composite membranes [J].
Ramani, V ;
Kunz, HR ;
Fenton, JM .
JOURNAL OF MEMBRANE SCIENCE, 2005, 266 (1-2) :110-114