Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell

被引:168
作者
Lee, D. C. [1 ]
Yang, H. N. [1 ]
Park, S. H. [1 ]
Kim, W. J. [1 ]
机构
[1] Konkuk Univ, Coll Engn, Dept Mat Chem & Engn, Neung Dong Ro 120, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene oxide; Water uptake; Proton conductivity; Cell performance; OCV; FUNCTIONALIZED GRAPHENE OXIDE; NANOCOMPOSITE MEMBRANE; HIGH-TEMPERATURE; LOW-HUMIDITY; PEMFC; ACID; HUMIDIFICATION; NANOPARTICLES; PERFORMANCE; REDUCTION;
D O I
10.1016/j.memsci.2013.10.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8 rim in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802 A, 1.27 A, 0.827 A at 0.6 V under 100% relative humidify (RH) for 0.5 wt%, 3.0 wt% and 4.5 wt% of GO content in the composite membrane, respectively, compared to 0.435 A for casting Nafion membrane. The Nafion/PL-G composite membrane, however, does not show sufficient enhancement under various RHs It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 57 条
[1]   PEO-carbon composite lithium polymer electrolyte [J].
Appetecchi, GB ;
Passerini, S .
ELECTROCHIMICA ACTA, 2000, 45 (13) :2139-2145
[2]   Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics [J].
Bao, Qiaoliang ;
Zhang, Han ;
Yang, Jia-xiang ;
Wang, Shuai ;
Tong, Ding Yuan ;
Jose, Rajan ;
Ramakrishna, Seeram ;
Lim, Chwee Teck ;
Loh, Kian Ping .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (05) :782-791
[3]   Efficiency and economics of proton exchange membrane (PEM) fuel cells [J].
Barbir, F ;
Gomez, T .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1997, 22 (10-11) :1027-1037
[4]   Proton conducting composite membranes for fuel cell application [J].
Bhavani, Perumal ;
Sangeetha, Dharmalingam .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) :14858-14865
[5]   Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J].
Buchi, FN ;
Srinivasan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2767-2772
[6]   Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis [J].
Chen, Guifen ;
Zhai, Shengyong ;
Zhai, Yanling ;
Zhang, Ke ;
Yue, Qiaoli ;
Wang, Lei ;
Zhao, Jinsheng ;
Wang, Huaisheng ;
Liu, Jifeng ;
Jia, Jianbo .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (07) :3136-3141
[7]   Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity [J].
Chen, S. Y. ;
Han, C. C. ;
Tsai, C. H. ;
Huang, J. ;
Chen-Yang, Y. W. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :363-372
[8]   Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J].
Chen, Wufeng ;
Yan, Lifeng ;
Bangal, Prakriti R. .
CARBON, 2010, 48 (04) :1146-1152
[9]   Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell [J].
Cho, S. H. ;
Yang, H. N. ;
Lee, D. C. ;
Park, S. H. ;
Kim, W. J. .
JOURNAL OF POWER SOURCES, 2013, 225 :200-206
[10]   Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets [J].
Choi, Bong Gill ;
Huh, Yun Suk ;
Park, Young Chul ;
Jung, Doo Hwan ;
Hong, Won Hi ;
Park, HoSeok .
CARBON, 2012, 50 (15) :5395-5402