Measurement and modeling of the radio frequency sheath impedance in a large magnetized plasma

被引:6
作者
Myra, J. R. [1 ]
Lau, C. [2 ]
Van Compernolle, B. [3 ,5 ]
Vincena, S. [3 ]
Wright, J. C. [4 ]
机构
[1] Lodestar Res Corp, Boulder, CO 80301 USA
[2] Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Gen Atom, San Diego, CA 92186 USA
关键词
ION-CYCLOTRON RANGE; IMPURITY PRODUCTION; ICRF ANTENNAS; RF SHEATH; CONVECTION; WAVES; POWER;
D O I
10.1063/5.0010688
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The DC and radio frequency (RF) properties of RF driven sheaths were studied in the Large Plasma Device (LAPD) at the University of California, Los Angeles. The experiments diagnosed RF sheaths on field lines connected to a grounded plate at one end and an ion cyclotron range of frequencies antenna at the other end. The experimental setup permitted measurement of the RF sheath impedance at the plate as a function of DC sheath voltage, with the latter controlled by varying the RF current applied to the antenna. The DC-voltage characteristics of these sheaths and the RF sheath impedance measurements were compared with modeling. Hot electrons, present in the LAPD plasma, were inferred to contribute significantly to both the DC and RF currents and hence the RF impedance. It was postulated that at very low power, hot electrons could not access the region of the plasma subject to RF waves resulting in an increased RF impedance. Within some experimental limitations and significant assumptions, an RF sheath impedance model was verified by the experimental data.
引用
收藏
页数:12
相关论文
共 72 条
[1]  
[Anonymous], 2017, BR J ANAESTH, V119, pe31
[2]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.3746678
[3]  
Bal G., 2019, 23 TOP C RAD POW PLA
[4]   Magnetized plasma sheath properties in the presence of Maxwellian low-temperature and non-Maxwellian high-temperature electrons [J].
Basnet, Suresh ;
Khanal, Raju .
PHYSICS OF PLASMAS, 2019, 26 (04)
[5]   Edge plasma density convection during ion cyclotron resonance heating on Tore Supra [J].
Bécoulet, M ;
Colas, L ;
Pécoul, S ;
Gunn, J ;
Ghendrih, P ;
Bécoulet, A ;
Heuraux, S .
PHYSICS OF PLASMAS, 2002, 9 (06) :2619-2632
[6]   Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U [J].
Bertelli, N. ;
Jaeger, E. F. ;
Hosea, J. C. ;
Phillips, C. K. ;
Berry, L. ;
Gerhardt, S. P. ;
Green, D. ;
LeBlanc, B. ;
Perkins, R. J. ;
Ryan, P. M. ;
Taylor, G. ;
Valeo, E. J. ;
Wilson, J. R. .
NUCLEAR FUSION, 2014, 54 (08)
[7]  
Bobkov Volodymyr, 2017, EPJ Web of Conferences, V157, DOI 10.1051/epjconf/201715703005
[8]   ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade [J].
Bobkov, Vl ;
Braun, F. ;
Colas, L. ;
Dux, R. ;
Faugel, H. ;
Giannone, L. ;
Herrmann, A. ;
Kallenbach, A. ;
Mueller, H. W. ;
Neu, R. ;
Noterdaeme, J. -M. ;
Puetterich, Th ;
Siegl, G. ;
Wolfrum, E. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S1005-S1008
[9]   PLASMA-WALL TRANSITION IN AN OBLIQUE MAGNETIC-FIELD [J].
CHODURA, R .
PHYSICS OF FLUIDS, 1982, 25 (09) :1628-1633
[10]   Particle trajectories in a sheath in a strongly tilted magnetic field [J].
Cohen, RH ;
Ryutov, DD .
PHYSICS OF PLASMAS, 1998, 5 (03) :808-817