Load-balancing for a block-based parallel adaptive 4D Vlasov solver

被引:0
作者
Hoenen, Olivier [1 ]
Violard, Eric [1 ]
机构
[1] Univ Strasbourg, LSIIT ICPS, Strasbourg, France
来源
EURO-PAR 2008 PARALLEL PROCESSING, PROCEEDINGS | 2008年 / 5168卷
关键词
SIMULATIONS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work is devoted to the numerical resolution of the 4D Vlasov equation using an adaptive mesh of phase space. We previously proposed a parallel algorithm designed for distributed memory architectures. The underlying numerical scheme makes possible a parallelization using a block-based mesh partitioning. Efficiency of this algorithm relies on maintaining a good load balance at a low cost during the whole simulation. In this paper, we propose a dynamic load balancing mechanism based on a geometric partitioning algorithm. This mechanism is deeply integrated into the parallel algorithm in order to minimize overhead. Performance measurements on a PC cluster show the good quality of our load balancing and confirm the pertinence of our approach.
引用
收藏
页码:822 / 832
页数:11
相关论文
共 12 条
[1]  
BERGER MJ, 1987, IEEE T COMPUT, V36, P570, DOI 10.1109/TC.1987.1676942
[2]  
BESSE N, 2001, NUMERICAL MATH ADV A, P437
[3]   Comparison of two Eulerian solvers for the four-dimensional Vlasov equation:: Part I [J].
Crouseilles, N. ;
Gutnic, M. ;
Latu, G. ;
Sonnendruecker, E. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (01) :88-93
[4]   Conservative numerical schemes for the Vlasov equation [J].
Filbet, F ;
Sonnendrücker, E ;
Bertrand, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) :166-187
[5]  
FILBET F, 2001, NUMERICAL MATH ADV A
[6]   Vlasov simulations on an adaptive phase-space grid [J].
Gutnic, M ;
Haefele, A ;
Paun, I ;
Sonnendrücker, E .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 164 (1-3) :214-219
[7]   A parallel Vlasov solver using a wavelet based adaptive mesh refinement [J].
Haefele, M ;
Latu, G ;
Gutnic, M .
2005 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2005, :181-188
[8]  
HOENEN O, 2008, LNCS, V4967
[9]  
PINTO MC, 2004, NUMERICAL METHODS HY, P43
[10]   The semi-Lagrangian method for the numerical resolution of the Vlasov equation [J].
Sonnendrücker, E ;
Roche, J ;
Bertrand, P ;
Ghizzo, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :201-220